• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    The passage of the bomb radiocarbon pulse into the Pacific Ocean

    Thumbnail
    View/Open
    _1182-1190.pdf (352.5Kb)
    Date
    2010-08
    Author
    Jenkins, William J.  Concept link
    Elder, Kathryn L.  Concept link
    McNichol, Ann P.  Concept link
    von Reden, Karl F.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4376
    As published
    https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/3615
    Abstract
    We report and compare radiocarbon observations made on 2 meridional oceanographic sections along 150°W in the South Pacific in 1991 and 2005. The distributions reflect the progressive penetration of nuclear weapons-produced 14C into the oceanic thermocline. The changes over the 14 yr between occupations are demonstrably large relative to any possible drift in our analytical standardization. The computed difference field based on the gridded data in the upper 1600 m of the section exhibits a significant decrease over time (approaching 40 to 50‰ in Δ14C) in the upper 200–300 m, consistent with the decadal post-bomb decline in atmospheric 14C levels. A strong positive anomaly (increase with time), centered on the low salinity core of the Antarctic Intermediate Water (AAIW), approaches 50–60‰ in Δ14C, a clear signature of the downstream evolution of the 14C transient in this water mass. We use this observation to estimate the transit time of AAIW from its “source region” in the southeast South Pacific and to compute the effective reservoir age of this water mass. The 2 sections show small but significant changes in the abyssal 14C distributions. Between 1991 and 2005, Δ14C has increased by 9‰ below 2000 m north of 55°S. This change is accompanied overall by a modest increase in salinity and dissolved oxygen, as well as a slight decrease in dissolved silica. Such changes are indicative of greater ventilation. Calculation of “phosphate star” also indicates that this may be due to a shift from the Southern Ocean toward North Atlantic Deep Water as the ventilation source of the abyssal South Pacific.
    Description
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2010. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 52 (2010): 1182-1190.
    Collections
    • Geology and Geophysics (G&G)
    Suggested Citation
    Radiocarbon 52 (2010): 1182-1190
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo