Lower crustal variability and the crust/mantle transition at the Atlantis Massif oceanic core complex
Citable URI
https://hdl.handle.net/1912/4322As published
https://doi.org/10.1029/2010GL045165DOI
10.1029/2010GL045165Abstract
Seismic refraction data provide new constraints on the structure of the lower oceanic crust and its variability across the Atlantis Massif oceanic core complex, ∼30°N on the Mid-Atlantic Ridge. A 40 km-long spreading-parallel profile constrains P-wave velocities to depths of up to ∼7 km beneath the seafloor. Two shorter spreading-perpendicular lines provide coverage to ∼2 km depth. The anomalous character of the massif's central dome crust is clear compared to the neighboring rift valley and similar-age crust on the opposite ridge flank. The domal core of the massif, unroofed via detachment faulting, has velocities >7.0 km/s at depths below ∼2.5 km sub-seafloor, increasing to 7.5–7.8 km/s over the depth range 4.8–6.8 km. Within the core complex, the Moho does not appear to be sharp as no PmP arrivals are observed. Within the axial valley, velocities do not reach mantle-transition zone values in the uppermost 6 km. We infer that crust there is of normal thickness but that a thinner than average mafic section is present in the central massif. Near IODP Hole U1309D, located on the central dome, there is a low velocity gradient interval at 1–3 km depth with velocities of 6.6–6.8 km/s, that coincides with a 3–5 km wide region where shallower velocities are highest. Given the predominantly gabbroic section recovered from the 1.4 km deep drillhole, this seismic structure suggests that the mafic body extends a few km both laterally and vertically.
Description
Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 37 (2010): L2430, doi:10.1029/2010GL045165.
Collections
Suggested Citation
Geophysical Research Letters 37 (2010): L2430Related items
Showing items related by title, author, creator and subject.
-
Downward continued multichannel seismic refraction analysis of Atlantis Massif oceanic core complex, 30°N, Mid-Atlantic Ridge
Henig, A. S.; Blackman, Donna K.; Harding, Alistair J.; Canales, J. Pablo; Kent, Graham M. (American Geophysical Union, 2012-05-19)Detailed seismic refraction results show striking lateral and vertical variability of velocity structure within the Atlantis Massif oceanic core complex (OCC), contrasting notably with its conjugate ridge flank. Multichannel ... -
Dynamic accretion beneath a slow-spreading ridge segment: IODP hole 1473A and the Atlantis Bank oceanic core complex
Dick, Henry J. B.; MacLeod, Christopher J.; Blum, Peter; Abe, Natsue; Blackman, Donna K.; Bowles, Julie A.; Cheadle, Michael J.; Cho, K.; Ciazela, Jakub; Deans, Jeremy; Edgcomb, Virginia P.; Ferrando, Carlotta; France, Lydéric; Ghosh, Biswajit; Ildefonse, Benoit; John, Barbara E.; Kendrick, Mark A.; Koepke, Juergen; Leong, James; Liu, Chuanzhou; Ma, Qiang; Morishita, Tomoaki; Morris, Antony; Natland, James H.; Nozaka, Toshio; Pluemper, Oliver; Sanfilippo, Alessio; Sylvan, Jason B.; Tivey, Maurice A.; Tribuzio, Riccardo; Viegas, G. (American Geophysical Union, 2019-11-07)809 deep IODP Hole U1473A at Atlantis Bank, SWIR, is 2.2 km from 1,508‐m Hole 735B and 1.4 from 158‐m Hole 1105A. With mapping, it provides the first 3‐D view of the upper levels of a 660‐km2 lower crustal batholith. It ... -
Magnetic mineral populations in lower oceanic crustal gabbros (Atlantis Bank, SW Indian Ridge): implications for marine magnetic anomalies
Bowles, Julie A.; Morris, Antony; Tivey, Maurice A.; Lascu, Ioan (American Geophysical Union, 2020-02-28)To learn more about magnetic properties of the lower ocean crust and its contributions to marine magnetic anomalies, gabbro samples were collected from International Ocean Discovery Program Hole U1473A at Atlantis Bank on ...