• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    A sound projector for acoustic tomography and global ocean monitoring

    Thumbnail
    View/Open
    Morozov&Webb.pdf (811.7Kb)
    Date
    2003-07-09
    Author
    Morozov, Andrey K.  Concept link
    Webb, Douglas C.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4298
    As published
    https://doi.org/10.1109/JOE.2003.811888
    DOI
    10.1109/JOE.2003.811888
    Keyword
     Acoustic tomography; Ocean acoustics; Sound projectors; Transducers 
    Abstract
    Long-range underwater acoustic systems, such as those used in ocean acoustic tomography, require low-frequency signals covering a broad frequency band. To meet this requirement, a novel design based on of a tunable narrow-band high-efficiency sound projector has been exploited. The projector transmits a frequency sweep signal by mechanically tuning a resonator tube (or organ pipe) to match the frequency and phase of a reference signal. The resonator tube projector consists of a symmetrical pressure-balanced Tonpilz driver placed between two coaxially mounted tubes. The Tonpilz acoustical driver is composed of two pistons separated by preloaded ceramic stacks. The resonant tube is a simple. efficient, narrow-band, medium-output projector that operates at any ocean depth. Both projector tubes have slots (or vents), which are progressively covered or uncovered by sliding coaxial tubular sleeves. The frequency varies with the sleeves position. A computer-controlled electromechanical actuator moves the cylindrical sleeves along the tubes, keeping the projector in resonance at the instantaneous frequency of a swept frequency signal. The actuator smoothly tunes the frequency of the resonator tube in the bandwidth of 200 to 300 Hz during a 135-s transmission. A computer synthesizes the linear frequency-modulated signal; compares the phase between transmitted and reference signals; and, using a phase-lock loop (PLL) system, keeps the resonator tube frequency in resonance with the driver frequency. The estimated PLL precision is better than 3 phase error. The system was analyzed by means of finite element analysis and electrical equivalent circuit simulation. The projector prototype was first tested at theWoods Hole Oceanographic Institution (WHOI) dock inWoods Hole, MA and later in the Pacific Ocean during a voyage of the R/V “Point Sur,” November 2001.
    Description
    Author Posting. © IEEE, 2003. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 28 (2003): 174-185, doi:10.1109/JOE.2003.811888.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    IEEE Journal of Oceanic Engineering 28 (2003): 174-185
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      A tomographic ocean sound speed profile from a long veritcal acoustic array 

      Njeru, James Murwanthanje (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1992-02)
      An average sound speed profile over a 1000 km section of the northeast Pacific ocean is obtained using Ocean Acoustic Tomography, from data acquired during the 1987 SVLA experiment on a long (900 m) 120 hydrophone vertical ...
    • Thumbnail

      Multipurpose acoustic networks in the integrated Arctic Ocean observing system 

      Mikhalevsky, Peter N.; Sagen, Hanne; Worcester, Peter F.; Baggeroer, Arthur B.; Orcutt, John A.; Moore, Sue E.; Lee, Craig M.; Vigness-Raposa, Kathleen J.; Freitag, Lee E.; Arrott, Matthew; Atakan, Kuvvet; Beszczynska-Möller, Agnieszka; Duda, Timothy F.; Dushaw, Brian D.; Gascard, Jean-Claude; Gavrilov, Alexander N.; Keers, Henk; Morozov, Andrey K.; Munk, Walter H.; Rixen, Michel; Sandven, Stein; Skarsoulis, Emmanuel; Stafford, Kathleen M.; Vernon, Frank L.; Yuen, Mo Yan (Arctic Institute of North America, 2015)
      The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This activity will be driven by increased demand for energy and the marine resources of an Arctic Ocean accessible ...
    • Thumbnail

      Evaluation of electromagnetic source for ocean climate acoustic thermometry at Lake Seneca 

      Slavinsky, Mark; Bogolubov, Boris; Alelekov, Igor; Pigalov, Konstantin; Spiesberger, John L.; Boutin, Paul R. (Woods Hole Oceanographic Institution, 1993-02)
      A compact electromagnetic monopole source, requiring pressure equalization, was evaluated at the Naval Underwater Systems Center at Lake Seneca during July 1992 by scientists from the Institute of Applied Physics of the ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo