• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    The influence of wind forcing on the Chesapeake Bay buoyant coastal current

    Thumbnail
    View/Open
    jpo2909%2E1.pdf (813.2Kb)
    Date
    2006-07
    Author
    Lentz, Steven J.  Concept link
    Largier, John  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4222
    As published
    https://doi.org/10.1175/JPO2909.1
    DOI
    10.1175/JPO2909.1
    Abstract
    Observations of the buoyant coastal current that flows southward from Chesapeake Bay are used to describe how the thickness, width, and propagation speed vary in response to changes in the along-shelf wind stress. Three basic regimes were observed depending on the strength of the wind. For weak wind stresses (from −0.02 to 0.02 Pa), the buoyant coastal current was relatively thin, the front slope was not steep, and the width was variable (1–20 km). For moderate downwelling (southward) wind stresses (0.02–0.07 Pa), wind-driven cross-shelf advection steepened the front, causing the plume to narrow and thicken. For stronger downwelling wind stresses (greater than 0.07 Pa), vertical mixing dominated, bulk Richardson numbers were approximately 0.25, isopycnals were nearly vertical, and the plume front widened but the plume width did not change. Plume thickness and width were normalized by the theoretical plume scales in the absence of wind forcing. Normalized plume thickness increased linearly from 1 to 2 as downwelling wind stresses increased from 0 to 0.2 Pa. Normalized plume widths were approximately 1 for downwelling wind stresses from 0.02 to 0.2 Pa. The observed along-shelf propagation speed of the plume was roughly equal to the sum of the theoretical propagation speed and the wind-driven along-shelf flow.
    Description
    Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 1305-1316, doi:10.1175/JPO2909.1.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Physical Oceanography 36 (2006): 1305-1316
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo