• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    The effect of wave breaking on surf-zone turbulence and alongshore currents : a modeling study

    Thumbnail
    View/Open
    jpo2800%2E1.pdf (798.3Kb)
    Date
    2005-11
    Author
    Feddersen, Falk  Concept link
    Trowbridge, John H.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4211
    As published
    https://doi.org/10.1175/JPO2800.1
    DOI
    10.1175/JPO2800.1
    Abstract
    The effect of breaking-wave-generated turbulence on the mean circulation, turbulence, and bottom stress in the surf zone is poorly understood. A one-dimensional vertical coupled turbulence (k–ε) and mean-flow model is developed that incorporates the effect of wave breaking with a time-dependent surface turbulence flux and uses existing (published) model closures. No model parameters are tuned to optimize model–data agreement. The model qualitatively reproduces the mean dissipation and production during the most energetic breaking-wave conditions in 4.5-m water depth off of a sandy beach and slightly underpredicts the mean alongshore current. By modeling a cross-shore transect case example from the Duck94 field experiment, the observed surf-zone dissipation depth scaling and the observed mean alongshore current (although slightly underpredicted) are generally reproduced. Wave breaking significantly reduces the modeled vertical shear, suggesting that surf-zone bottom stress cannot be estimated by fitting a logarithmic current profile to alongshore current observations. Model-inferred drag coefficients follow parameterizations (Manning–Strickler) that depend on the bed roughness and inversely on the water depth, although the inverse depth dependence is likely a proxy for some other effect such as wave breaking. Variations in the bed roughness and the percentage of breaking-wave energy entering the water column have a comparable effect on the mean alongshore current and drag coefficient. However, covarying the wave height, forcing, and dissipation and bed roughness separately results in an alongshore current (drag coefficient) only weakly (strongly) dependent on the bed roughness because of the competing effects of increased turbulence, wave forcing, and orbital wave velocities.
    Description
    Author Posting. © American Meteorological Society, 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 35 (2005): 2187–2203, doi:10.1175/JPO2800.1.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    Journal of Physical Oceanography 35 (2005): 2187-2203
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo