• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Acceleration of a stratified current over a sloping bottom, driven by an alongshelf pressure gradient

    Thumbnail
    View/Open
    jpo2744%2E1.pdf (780.5Kb)
    Date
    2005-08
    Author
    Chapman, David C.  Concept link
    Lentz, Steven J.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4204
    As published
    https://doi.org/10.1175/JPO2744.1
    DOI
    10.1175/JPO2744.1
    Abstract
    An idealized theoretical model is developed for the acceleration of a two-dimensional, stratified current over a uniformly sloping bottom, driven by an imposed alongshelf pressure gradient and taking into account the effects of buoyancy advection in the bottom boundary layer. Both downwelling and upwelling pressure gradients are considered. For a specified pressure gradient, the model response depends primarily on the Burger number S = Nα/f, where N is the initial buoyancy frequency, α is the bottom slope, and f is the Coriolis parameter. Without stratification (S = 0), buoyancy advection is absent, and the alongshelf flow accelerates until bottom stress balances the imposed pressure gradient. The e-folding time scale to reach this steady state is the friction time, h/r, where h is the water depth and r is a linear bottom friction coefficient. With stratification (S ≠ 0), buoyancy advection in the bottom boundary layer produces vertical shear, which prevents the bottom stress from becoming large enough to balance the imposed pressure gradient for many friction time scales. Thus, the alongshelf flow continues to accelerate, potentially producing large velocities. The acceleration increases rapidly with increasing S, such that even relatively weak stratification (S > 0.2) has a major impact. These results are supported by numerical model calculations.
    Description
    Author Posting. © American Meteorological Society, 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 35 (2005): 1305-1317, doi:10.1175/JPO2744.1.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Physical Oceanography 35 (2005): 1305-1317
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo