• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Role of net surface heat flux in seasonal variations of sea surface temperature in the tropical Atlantic Ocean

    Thumbnail
    View/Open
    jcli3970%2E1.pdf (2.420Mb)
    Date
    2006-12-01
    Author
    Yu, Lisan  Concept link
    Jin, Xiangze  Concept link
    Weller, Robert A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4181
    As published
    https://doi.org/10.1175/JCLI3970.1
    DOI
    10.1175/JCLI3970.1
    Keyword
     Sea surface temperature; Surface fluxes; Seasonal variability 
    Abstract
    The present study used a new net surface heat flux (Qnet) product obtained from the Objective Analyzed Air–Sea Fluxes (OAFlux) project and the International Satellite Cloud Climatology Project (ISCCP) to examine two specific issues—one is to which degree Qnet controls seasonal variations of sea surface temperature (SST) in the tropical Atlantic Ocean (20°S–20°N, east of 60°W), and the other is whether the physical relation can serve as a measure to evaluate the physical representation of a heat flux product. To better address the two issues, the study included the analysis of three additional heat flux products: the Southampton Oceanographic Centre (SOC) heat flux analysis based on ship reports, and the model fluxes from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis and the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). The study also uses the monthly subsurface temperature fields from the World Ocean Atlas to help analyze the seasonal changes of the mixed layer depth (hMLD). The study showed that the tropical Atlantic sector could be divided into two regimes based on the influence level of Qnet. SST variability poleward of 5°S and 10°N is dominated by the annual cycle of Qnet. In these regions the warming (cooling) of the sea surface is highly correlated with the increased (decreased) Qnet confined in a relatively shallow (deep) hMLD. The seasonal evolution of SST variability is well predicted by simply relating the local Qnet with a variable hMLD. On the other hand, the influence of Qnet diminishes in the deep Tropics within 5°S and 10°N and ocean dynamic processes play a dominant role. The dynamics-induced changes in SST are most evident along the two belts, one of which is located on the equator and the other off the equator at about 3°N in the west, which tilts to about 10°N near the northwestern African coast. The study also showed that if the degree of consistency between the correlation relationships of Qnet, hMLD, and SST variability serves as a measure of the quality of the Qnet product, then the Qnet from OAFlux + ISCCP and ERA-40 are most physically representative, followed by SOC. The NCEP–NCAR Qnet is least representative. It should be noted that the Qnet from OAFlux + ISCCP and ERA-40 have a quite different annual mean pattern. OAFlux + ISCCP agrees with SOC in that the tropical Atlantic sector gains heat from the atmosphere on the annual mean basis, where the ERA-40 and the NCEP–NCAR model reanalyses indicate that positive Qnet occurs only in the narrow equatorial band and in the eastern portion of the tropical basin. Nevertheless, seasonal variances of the Qnet from OAFlux + ISCCP and ERA-40 are very similar once the respective mean is removed, which explains why the two agree with each other in accounting for the seasonal variability of SST. In summary, the study suggests that an accurate estimation of surface heat flux is crucially important for understanding and predicting SST fluctuations in the tropical Atlantic Ocean. It also suggests that future emphasis on improving the surface heat flux estimation should be placed more on reducing the mean bias.
    Description
    Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 6153–6169, doi:10.1175/JCLI3970.1.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Climate 19 (2006): 6153-6169
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      What controls seasonal evolution of sea surface temperature in the Bay of Bengal? Mixed layer heat budget analysis using moored buoy observations along 90°E 

      Thangaprakash, V. P.; Girishkumar, M. S.; Suprit, K.; Kumar, N. Suresh; Chaudhuri, Dipanjan; Dinesh, K.; Kumar, Ashok; Shivaprasad, S.; Ravichandran, M.; Farrar, J. Thomas; Sundar, R.; Weller, Robert A. (The Oceanography Society, 2016-06)
      Continuous time-series measurements of near surface meteorological and ocean variables obtained from Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) moorings at 15°N, 90°E; 12°N, ...
    • Thumbnail

      Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000–2005) and its relationship to mass balance 

      Hall, Dorothy K.; Williams, Richard S.; Casey, K. A.; Digirolamo, Nicolo E.; Wan, Z. (American Geophysical Union, 2006-06-08)
      Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product ...
    • Thumbnail

      Variations in ocean surface temperature due to near-surface flow : straining the cool skin layer 

      Wells, Andrew J.; Cenedese, Claudia; Farrar, J. Thomas; Zappa, Christopher J. (American Meteorological Society, 2009-11)
      The aqueous thermal boundary layer near to the ocean surface, or skin layer, has thickness O(1 mm) and plays an important role in controlling the exchange of heat between the atmosphere and the ocean. Theoretical arguments ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo