Climate variability in the equatorial Pacific Ocean induced by decadal variability of mixing coefficient
Citable URI
https://hdl.handle.net/1912/4148As published
https://doi.org/10.1175/jpo3060.1DOI
10.1175/jpo3060.1Abstract
The circulation in the equatorial Pacific Ocean is studied in a series of numerical experiments based on an isopycnal coordinate model. The model is subject to monthly mean climatology of wind stress and surface thermohaline forcing. In response to decadal variability in the diapycnal mixing coefficient, sea surface temperature and other properties of the circulation system oscillate periodically. The strongest sea surface temperature anomaly appears in the geographic location of Niño-3 region with the amplitude on the order of 0.5°C, if the model is subject to a 30-yr sinusoidal oscillation in diapycnal mixing coefficient that varies between 0.03 × 10−4 and 0.27 × 10−4 m2 s−1. Changes in diapycnal mixing coefficient of this amplitude are within the bulk range consistent with the external mechanical energy input in the global ocean, especially when considering the great changes of tropical cyclones during the past decades. Thus, time-varying diapycnal mixing associated with changes in wind energy input into the ocean may play a nonnegligible role in decadal climate variability in the equatorial circulation and climate.
Description
Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1163-1176, doi:10.1175/jpo3060.1.
Collections
Suggested Citation
Journal of Physical Oceanography 37 (2007): 1163-1176Related items
Showing items related by title, author, creator and subject.
-
Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events
Ummenhofer, Caroline C.; Biastoch, Arne; Böning, Claus W. (American Meteorological Society, 2017-02-15)The Indian Ocean has sustained robust surface warming in recent decades, but the role of multidecadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature ... -
Coupled model biases breed spurious low‐frequency variability in the tropical Pacific Ocean
Samanta, Dhrubajyoti; Karnauskas, Kristopher B.; Goodkin, Nathalie F.; Coats, Sloan; Smerdon, Jason E.; Zhang, Lei (John Wiley & Sons, 2018-10-07)Coupled general circulation model (GCM) biases in the tropical Pacific are substantial, including a westward extended cold sea surface temperature (SST) bias linked to El Niño–Southern Oscillation (ENSO). Investigation of ... -
Numerical investigations of seasonal and interannual variability of North Pacific Subtropical Mode Water and its implications for Pacific climate variability
Davis, Xujing Jia; Rothstein, Lewis M.; Dewar, William K.; Menemenlis, Dimitris (American Meteorological Society, 2011-06-01)North Pacific Subtropical Mode Water (NPSTMW) is an essential feature of the North Pacific subtropical gyre imparting significant influence on regional SST evolution on seasonal and longer time scales and, as such, is an ...