Direct estimation of the Reynolds stress vertical structure in the nearshore
Citable URI
https://hdl.handle.net/1912/4126As published
https://doi.org/10.1175/JTECH1953.1DOI
10.1175/JTECH1953.1Keyword
Waves, oceanic; Stress; SensorsAbstract
Measurements of the vertical Reynolds stress components in the wave-dominated nearshore are required to diagnose momentum and turbulence dynamics. Removing wave bias from Reynolds stress estimates is critical to a successful diagnosis. Here two existing Reynolds stress estimation methods (those of Trowbridge, and Shaw and Trowbridge) for wave-dominated environments and an extended method (FW) that is a combination of the two are tested with a vertical array of three current meters deployed in 3.2-m water depth off an ocean beach. During the 175-h-long experiment the instruments were seaward of the surfzone and the alongshore current was wind driven. Intercomparison of Reynolds stress methods reveals that the Trowbridge method is wave bias dominated. Tests of the integrated cospectra are used to reject bad Reynolds stress estimates, and the Shaw and Trowbridge estimates are rejected more often than FW estimates. With the FW method, wave bias remains apparent in the cross-shore component of the Reynolds stress. However, the alongshore component of Reynolds stress measured at the three current meters are related to each other with a vertically uniform first EOF containing 73% of the variance, indicating the presence of a constant stress layer. This is the first time the vertical structure of Reynolds stress has been measured in a wave-dominated environment. The Reynolds stress is, albeit weakly, related to the wind stress and a parameterized bottom stress. Using derived wave bias and bottom stress parameterizations, the effect of wave bias on Reynolds stress estimates is shown to be weaker for more typical surfzone conditions (with both stronger waves and currents than those observed here).
Description
Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 24 (2007): 102-116, doi:10.1175/JTECH1953.1.
Collections
Suggested Citation
Journal of Atmospheric and Oceanic Technology 24 (2007): 102-116Related items
Showing items related by title, author, creator and subject.
-
Characterizing wave- and current- induced bottom shear stress : U.S. middle Atlantic continental shelf
Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.; Wilkin, John L. (Elsevier B.V., 2012-11-05)Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the ... -
12 May 2008 M = 7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems
Toda, Shinji; Lin, Jian; Meghraoui, Mustapha; Stein, Ross S. (American Geophysical Union, 2008-09-09)The Wenchuan earthquake on the Longmen Shan fault zone devastated cities of Sichuan, claiming at least 69,000 lives. We calculate that the earthquake also brought the Xianshuihe, Kunlun and Min Jiang faults 150–400 km from ... -
The role of Nrf1 and Nrf2 in the regulation of glutathione and redox dynamics in the developing zebrafish embryo
Sant, Karilyn E.; Hansen, Jason M.; Williams, Larissa M.; Tran, Nancy L.; Goldstone, Jared V.; Stegeman, John J.; Hahn, Mark E.; Timme-Laragy, Alicia R. (Elsevier, 2017-05-30)Redox signaling is important for embryogenesis, guiding pathways that govern processes crucial for embryo patterning, including cell polarization, proliferation, and apoptosis. Exposure to pro-oxidants during this period ...