• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Global variations in oceanic evaporation (1958–2005) : the role of the changing wind speed

    Thumbnail
    View/Open
    2007jcli1714%2E1.pdf (2.525Mb)
    Date
    2007-11-01
    Author
    Yu, Lisan  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4110
    As published
    https://doi.org/10.1175/2007JCLI1714.1
    DOI
    10.1175/2007JCLI1714.1
    Keyword
     Evaporation; Winds; Climatology; Air-sea interaction; Decadal variability 
    Abstract
    Global estimates of oceanic evaporation (Evp) from 1958 to 2005 have been recently developed by the Objectively Analyzed Air–Sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution (WHOI). The nearly 50-yr time series shows that the decadal change of the global oceanic evaporation (Evp) is marked by a distinct transition from a downward trend to an upward trend around 1977–78. Since the transition, the global oceanic Evp has been up about 11 cm yr−1 (10%), from a low at 103 cm yr−1 in 1977 to a peak at 114 cm yr−1 in 2003. The increase in Evp was most dramatic during the 1990s. The uncertainty of the estimates is about ±2.74 cm yr−1. By utilizing the newly developed datasets of Evp and related air–sea variables, the study investigated the cause of the decadal change in oceanic Evp. The decadal differences between the 1990s and the 1970s indicates that the increase of Evp in the 1990s occurred over a global scale and had spatially coherent structures. Larger Evp is most pronounced in two key regions—one is the paths of the global western boundary currents and their extensions, and the other is the tropical Indo-Pacific warm water pools. It is also found that Evp was enlarged primarily during the hemispheric wintertime (defined as the mean of December–February for the northern oceans and June–August for the southern oceans). Despite the dominant upward tendency over the global basins, a slight reduction in Evp appeared in such regions as the subtropical centers of the Evp maxima as well as the eastern equatorial Pacific and Atlantic cold tongues. An empirical orthogonal function (EOF) analysis was performed for the yearly winter-mean time series of Evp and the related air–sea variables [i.e., wind speed (U) and air–sea humidity differences (dq)]. The analysis suggested a dominant role of the wind forcing in the decadal change of both Evp and dq. It is hypothesized that wind impacts Evp in two ways. The first way is direct: the greater wind speed induces more evaporation by carrying water vapor away from the evaporating surface to allow the air–sea humidity gradients to be reestablished at a faster pace. The second way is indirect: the enhanced surface wind strengthens the wind-driven subtropical gyre, which in turn drives a greater heat transport by the western boundary currents, warms up SST along the paths of the currents and extensions, and causes more evaporation by enlarging the air–sea humidity gradients. The EOF analysis performed for the time series of the global annual-mean Evp fields showed that the first three EOF modes account for nearly 50% of the total variance. The mode 1 variability represents the upward trend in Evp after 1978 and is attributable to the increased U, and the mode 2 variability explains much of the downward trend in Evp before 1978 and is correlated to the global dq variability. The EOF mode 3 of Evp captures the interannual variability of Evp on time scales of the El Niño–Southern Oscillation, with the center of action over the eastern equatorial Pacific.
    Description
    Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 20 (2007): 5376–5390, doi:10.1175/2007JCLI1714.1.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Climate 20 (2007): 5376–5390
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Oceanic and terrestrial sources of continental precipitation 

      Gimeno, Luis; Stohl, Andreas; Trigo, Ricardo M.; Dominguez, Francina; Yoshimura, Kei; Yu, Lisan; Drumond, Anita; Duran-Quesada, Ana Maria; Nieto, Raquel (American Geophysical Union, 2012-11-08)
      The most important sources of atmospheric moisture at the global scale are herein identified, both oceanic and terrestrial, and a characterization is made of how continental regions are influenced by water from different ...
    • Thumbnail

      Note on the vertical velocity and diffusive salt flux induced by evaporation and precipitation 

      Warren, Bruce A. (American Meteorological Society, 2009-10)
      Some (not all) of the oceanographic literature slightly miscalculates the vertical velocity (w) and diffusive salt flux induced by evaporation (E) and precipitation (P) at the sea surface. Short, simple, physical derivations ...
    • Thumbnail

      Westward mountain-gap wind jets of the northern Red Sea as seen by QuikSCAT 

      Menezes, Viviane V.; Farrar, J. Thomas; Bower, Amy S. (Elsevier, 2018-03-19)
      We analyse ten years of QuikSCAT satellite surface winds to statistically characterize the spatio-temporal variability of the westward mountain-gap wind jets over the northern Red Sea. These wind jets bring relatively cold ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo