Observations of the dispersion characteristics and meridional sea level structure of equatorial waves in the Pacific Ocean
Citable URI
https://hdl.handle.net/1912/4050As published
https://doi.org/10.1175/2007JPO3890.1DOI
10.1175/2007JPO3890.1Keyword
Spectral analysis; Sea level; Dispersion; Kelvin waves; Rossby wavesAbstract
Spectral techniques applied to altimetry data are used to examine the dispersion relation and meridional sea level structure of wavelike variability with periods of about 20 to 200 days in the equatorial Pacific Ocean. Zonal wavenumber–frequency power spectra of sea surface height, when averaged over about 7°S–7°N, exhibit spectral peaks near the theoretical dispersion curves of first baroclinic-mode equatorial Kelvin and Rossby waves. There are distinct, statistically significant ridges of power near the first and second meridional-mode Rossby wave dispersion curves. Sea level variability near the theoretical Kelvin wave and first meridional-mode Rossby wave dispersion curves is dominantly (but not perfectly) symmetric about the equator, while variability near the theoretical second meridional-mode Rossby wave dispersion curve is dominantly antisymmetric. These results are qualitatively consistent with expectations from classical or shear-modified theories of equatorial waves.
The meridional structures of these modes resemble the meridional modes of equatorial wave theory, but there are some robust features of the meridional profiles that were not anticipated. The meridional sea level structure in the intraseasonal Kelvin wave band closely resembles the theoretically expected Gaussian profile, but sea level variability coherent with that at the equator is detected as far away as 11.75°S, possibly as a result of the forced nature of these Kelvin waves. Both first and second meridional-mode Rossby waves have larger amplitude in the Northern Hemisphere. The meridional sea level structure of tropical instability waves closely resembles that predicted by Lyman et al. using a model linearized about a realistic equatorial zonal current system.
Description
Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1669-1689, doi:10.1175/2007JPO3890.1.
Collections
Suggested Citation
Journal of Physical Oceanography 38 (2008): 1669-1689Related items
Showing items related by title, author, creator and subject.
-
Employing plant functional groups to advance seed dispersal ecology and conservation
Aslan, Clare E.; Beckman, Noelle G.; Rogers, Haldre S.; Bronstein, Judith L.; Zurell, Damaris; Hartig, Florian; Shea, Katriona; Pejchar, Liba; Neubert, Michael G.; Poulsen, John R.; Hille Ris Lambers, Janneke; Miriti, Maria; Loiselle, Bette; Effiom, Edu; Zambrano, Jenny; Schupp, Eugene W.; Pufal, Gesine; Johnson, Jeremy; Bullock, James M.; Brodie, Jedediah; Bruna, Emilio; Cantrell, Robert Stephen; Decker, Robin; Fricke, Evan; Gurski, Katherine; Hastings, Alan; Kogan, Oleg; Razafindratsima, Onja; Sandor, Manette; Schreiber, Sebastian; Snell, Rebecca; Strickland, Christopher; Zhou, Ying (Oxford University Press, 2019-02-17)Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and ... -
The formation of marine kin structure : effects of dispersal, larval cohesion, and variable reproductive success
D'Aloia, Cassidy C.; Neubert, Michael G. (2018-08)The spatial distribution of relatives has profound e ects on kin interactions, inbreeding, and inclusive tness. Yet, in the marine environment, the processes that generate patterns of kin structure remain understudied ... -
The evolution of marine larval dispersal kernels in spatially structured habitats: Analytical models, individual-based simulations, and comparisons with empirical estimates.
Shaw, Allison K.; D'Aloia, Cassidy C.; Buston, Peter M. (University of Chicago Press, 2019-01-17)Understanding the causes of larval dispersal is a major goal of marine ecology, yet most research focuses on proximate causes. Here we ask how ultimate, evolutionary causes affect dispersal. Building on Hamilton and May’s ...