Show simple item record

dc.contributor.authorKida, Shinichiro  Concept link
dc.contributor.authorYang, Jiayan  Concept link
dc.contributor.authorPrice, James F.  Concept link
dc.date.accessioned2010-10-26T19:20:40Z
dc.date.available2010-10-26T19:20:40Z
dc.date.issued2009-02
dc.identifier.citationJournal of Physical Oceanography 39 (2009): 387-403en_US
dc.identifier.urihttps://hdl.handle.net/1912/4009
dc.descriptionAuthor Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 387-403, doi:10.1175/2008JPO3934.1.en_US
dc.description.abstractMarginal sea overflows and the overlying upper ocean are coupled in the vertical by two distinct mechanisms—by an interfacial mass flux from the upper ocean to the overflow layer that accompanies entrainment and by a divergent eddy flux associated with baroclinic instability. Because both mechanisms tend to be localized in space, the resulting upper ocean circulation can be characterized as a β plume for which the relevant background potential vorticity is set by the slope of the topography, that is, a topographic β plume. The entrainment-driven topographic β plume consists of a single gyre that is aligned along isobaths. The circulation is cyclonic within the upper ocean (water columns are stretched). The transport within one branch of the topographic β plume may exceed the entrainment flux by a factor of 2 or more. Overflows are likely to be baroclinically unstable, especially near the strait. This creates eddy variability in both the upper ocean and overflow layers and a flux of momentum and energy in the vertical. In the time mean, the eddies accompanying baroclinic instability set up a double-gyre circulation in the upper ocean, an eddy-driven topographic β plume. In regions where baroclinic instability is growing, the momentum flux from the overflow into the upper ocean acts as a drag on the overflow and causes the overflow to descend the slope at a steeper angle than what would arise from bottom friction alone. Numerical model experiments suggest that the Faroe Bank Channel overflow should be the most prominent example of an eddy-driven topographic β plume and that the resulting upper-layer transport should be comparable to that of the overflow. The overflow-layer eddies that accompany baroclinic instability are analogous to those observed in moored array data. In contrast, the upper layer of the Mediterranean overflow is likely to be dominated more by an entrainment-driven topographic β plume. The difference arises because entrainment occurs at a much shallower location for the Mediterranean case and the background potential vorticity gradient of the upper ocean is much larger.en_US
dc.description.sponsorshipSK’s support during the time of his Ph.D. research in the MIT/WHOI Joint Program was provided by the National Science Foundation through Grant OCE04-24741. JP and JY have also received support from the Climate Process Team on Gravity Current Entrainment, NSF Grant OCE-0611530. JY has also been supported by NSF Grant OCE-0351055.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.publisherAmerican Meteorological Societyen_US
dc.relation.urihttps://doi.org/10.1175/2008JPO3934.1
dc.subjectBaroclinic flowsen_US
dc.subjectMass fluxes/transporten_US
dc.subjectEntrainmenten_US
dc.subjectTopographic effectsen_US
dc.subjectPotential vorticityen_US
dc.titleMarginal sea overflows and the upper ocean interactionen_US
dc.typeArticleen_US
dc.identifier.doi10.1175/2008JPO3934.1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record