mirage

Particle flux in the Western Black Sea in the present and over the last 5,000 years : temporal variability, sources, transport mechanisms

WHOAS at MBLWHOI Library

a service of the MBLWHOI Library | About WHOAS

Show simple item record

dc.contributor.author Hay, Bernward J.
dc.coverage.spatial Black Sea
dc.date.accessioned 2010-10-20T15:30:15Z
dc.date.available 2010-10-20T15:30:15Z
dc.date.issued 1987-09
dc.identifier.uri http://hdl.handle.net/1912/3966
dc.description Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1987 en_US
dc.description.abstract The particle flux in the present and over the last 5,000 years was investigated in the Black Sea in a comparative study with samples from time-series sediment traps and laminated core sediments. The sediment trap samples were collected in the southwestern Black Sea over 2 1/2 years at sampling intervals of about two weeks. Sediment core samples were derived from the central part of the western Black Sea, deposited throughout the last 5,000 years during which the Black Sea was anoxic. Conclusions from this study shed important light on temporal and regional variability of the particle flux in the Black Sea, dominant particle sources, and particle transport mechanisms. Dominant particle sources are biogenic matter (coccolithophorids of the species Emiliania huxleyi, diatoms, and silicoflagellates) and terrigenous matter from the Danube and nearby local rivers. The relative importance in the supply of these particles varies annually and can be grouped into three phases: Phase I (June-October) coccolithophorid production, Phase II (November-January) - resuspension of coccoliths and terrigenous matter, and Phase III (February-May) river input of terrigenous matter and production of diatoms and silicoflagellates. Once removed from the surface water, particles settle rapidly at a rate of 115 ±70 m/day. Regionally, the particle flux varies considerably. Throughout the last 1,000 years (sediment unit I), the particle flux (paleoflux) was more than 5 times larger in the central part of the western Black Sea than at present in the southwestern Black Sea, mostly because of the 11 times larger supply of coccoliths. The coccoliths were probably largely produced on or adjacent to the Danube shelf in the northwestern Black Sea and subsequently resuspended and transported offshelf by the fall storms. Terrigenous matter in the central part of the western Black Sea is higher by a factor of 3 compared to the southwestern Black Sea. The coccoliths are concentrated in the white laminae (>93 % CaCO3), and if the seasonal dynamics in the particle supply at the sediment trap site is taken as a standard, the white laminae would be deposited between about June and January. The black laminae contain largely terrigenous matter and form during the peak river discharge period between about February and May. Compared to the last 1,000 years (unit I), the particle flux in the central part of the western Black Sea between 1,000 and 5,000 years B.P. was smaller by a factor of three, because the salinity was still too low during this time period for the coccolithophorid Emiliania huxleyi to exist. The Black Sea was a fresh water environment before more than 5,000 years ago and gradually became brackish; Emiliania huxleyi became established after the salinity exceeded 11%. The terrigenous matter supply remained about constant over the last 5,000 years. The western Black Sea is dominated by terrigenous input from the Danube as revealed by the illite/montmorillonite ratio. Seasonally, the terrigenous matter from the Danube appears to be traceable in the southwestern Black Sea, as seen by the Ti/Al and illite/montmorillonite ratios in the sediment trap samples. en_US
dc.description.sponsorship This research was funded by National Science Foundation Grant No. OCE-8417106 and Office of Naval Research Contract No. N00014-85-C-0001. en_US
dc.format.mimetype application/pdf
dc.language.iso en_US en_US
dc.publisher Massachusetts Institute of Technology and Woods Hole Oceanographic Institution en_US
dc.relation.ispartofseries WHOI Theses en_US
dc.subject Particles en_US
dc.title Particle flux in the Western Black Sea in the present and over the last 5,000 years : temporal variability, sources, transport mechanisms en_US
dc.type Thesis en_US
dc.identifier.doi 10.1575/1912/3966


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search WHOAS


Browse

My Account

Statistics