• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Estimation of sea surface wave spectra using acoustic tomography

    Thumbnail
    View/Open
    Miller_thesis.pdf (3.751Mb)
    Date
    1987-08
    Author
    Miller, James H.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/3944
    DOI
    10.1575/1912/3944
    Keyword
    Ocean waves
    Abstract
    This thesis develops a new technique for estimating quasi-homogeneous and quasi-stationary sea surface wave frequency-direction spectra using acoustic tomography. The analysis of acoustic (mode and ray) phase and travel time perturbations due to a rough sea surface is presented. Two canonical waveguides (ideal shallow water and linear squared index of refraction) are used as examples for the mode perturbation. The analysis is used to explain high mode coherence measured in the FRAM N experiment. The forward problem of computing the acoustic phase and travel time perturbation spectra given the surface wave spectrum is solved to first order. An application of the technique to ray phase data taken during the MIZEX '84 experiment is shown. The inverse problems for the homogeneous and quasi-homogel1eous frequency-direction spectrum are introduced. The theory is applied to synthetic data which simulate a fetch-dependent sea. The estimates made agree well with the "actual" (synthetic data) spectrum. The effect of noise in the travel time estimates is studied. The sensitivity of the technique. to the number of rays used in the inversion is investigated and the resolution and variance of the inverse method are addressed.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1987
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • WHOI Theses
    Suggested Citation
    Thesis: Miller, James H., "Estimation of sea surface wave spectra using acoustic tomography", 1987-08, DOI:10.1575/1912/3944, https://hdl.handle.net/1912/3944
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Little Ice Age climate in the Western Tropical Atlantic inferred from coral geochemical proxies 

      Alpert, Alice (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2016-09)
      Paleoclimate archives place the short instrumental record of climate variability in a longer temporal context and allow better understanding of the rate, nature and extent by which anthropogenic warming will i ...
    • Thumbnail

      Interaction of high frequency internal waves and the boundary layer on the continental shelf 

      Sanford, Lawrence P. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1984-08)
      Intermittent, shoreward propagating packets of high frequency first mode internal waves are common on the continental shelf when the water column is stratified and may induce large fluctuations in near bottom velocity. ...
    • Thumbnail

      Stability of a coastal upwelling front over topography 

      Barth, John A. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1987-10)
      A two-layer shallow water equation model is used to investigate the linear stability of a coastal upwelling front. The model features a surface front near a coastal boundary and bottom topography which is an arbitrary ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo