• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Marine Biological Laboratory
    • Ecosystems Center
    • View Item
    •   WHOAS Home
    • Marine Biological Laboratory
    • Ecosystems Center
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Nitrogen dynamics in a small arctic watershed: retention and downhill movement of 15N

    Thumbnail
    View/Open
    Author's draft (178.7Kb)
    Figures and legends (1.007Mb)
    Tables (56.5Kb)
    Appendix (24.5Kb)
    Date
    2009-06-12
    Author
    Yano, Yuriko  Concept link
    Shaver, Gaius R.  Concept link
    Giblin, Anne E.  Concept link
    Rastetter, Edward B.  Concept link
    Nadelhoffer, Knute J.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/3903
    As published
    https://doi.org/10.1890/08-0773.1
    Keyword
     15NH4; Arctic tundra watershed; Total dissolved N; Downhill transport of N; Hydrolysable amino acids; Hydrolysable amino sugars; Mosses; N dynamics; N immobilization; N leaching; N limitation; Snowmelt 
    Abstract
    We examined short- and long-term nitrogen (N) dynamics and availability along an arctic hillslope in Alaska, USA, using stable isotope of nitrogen (15N), as a tracer. Tracer levels of 15NH4+ were sprayed once onto the tundra at six sites in four tundra types; heath (crest), tussock with high and low water flux (mid- and foot-slope), and wet sedge (riparian). 15N in vegetation and soil was monitored to estimate retention and loss over a 3-yr period. Nearly all 15NH4+ was immediately retained in the surface moss-detritus-plant layer and > 57 % of the 15N added remained in this layer at the end of the second year. Organic soil was the second largest 15N sink. By the end of the third growing season, the moss-detritus-plant layer and organic soil combined retained ≥ 87 % of the 15N added except at the mid-slope site with high water flux, where recovery declined to 68 %. At all sites, non-extractable and non-labile-N pools were the principal sinks for added 15N in the organic soil. Hydrology played an important role in downslope movement of dissolved 15N. Crest and mid-slope with high water flux sites were most susceptible to 15N losses via leaching perhaps because of deep permeable mineral soil (crest) and high water flow (mid-slope with high water flux). Late spring melt-season also resulted in downslope dissolved-15N losses, perhaps because of an asynchrony between N release into melt water and soil immobilization capacity. We conclude that separation of the rooting zone from the strong sink for incoming N in the moss detritus-plant layer, rapid incorporation of new N into relatively recalcitrant soil-N pools within the rooting zone, and leaching loss from the upper hillslope would all contribute to the strong N limitation of this ecosystem. An extended snow-free season and deeper depth of thaw under warmer climate may significantly alter current N dynamics in this arctic ecosystem.
    Description
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Monographs 80 (2010): 331-351, doi:10.1890/08-0773.1.
    Collections
    • Ecosystems Center
    Suggested Citation
    Preprint: Yano, Yuriko, Shaver, Gaius R., Giblin, Anne E., Rastetter, Edward B., Nadelhoffer, Knute J., "Nitrogen dynamics in a small arctic watershed: retention and downhill movement of 15N", 2009-06-12, https://doi.org/10.1890/08-0773.1, https://hdl.handle.net/1912/3903
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Isotopic signals (18O, 2H, 3H) of six major rivers draining the pan-Arctic watershed 

      Yi, Y.; Gibson, J. J.; Cooper, Lee W.; Helie, J.-F.; Birks, S. J.; McClelland, James W.; Holmes, Robert M.; Peterson, Bruce J. (American Geophysical Union, 2012-03-22)
      We present the results of a 4-year collaborative sampling effort that measured δ18O, δ2H values and 3H activities in the six largest Arctic rivers (the Ob, Yenisey, Lena, Kolyma, Yukon and Mackenzie). Using consistent ...
    • Thumbnail

      Coastal phytoplankton and mercury dynamics in watersheds along the U.S. East Coast from New Jersey to Maine assessed using particulate and dissolved samples collected in 2015 and 2016 

      Mason, Robert (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-02-22)
      Dissolved total mercury, dissolved methylmercury, dissolved organic carbon as well as different size fractions of coastal phytoplankton were measured in watersheds along the U.S. East Coast from New Jersey to Maine in 2015 ...
    • Thumbnail

      Sea surface pCO2 and O2 dynamics in the partially ice-covered Arctic Ocean 

      Islam, Fakhrul; DeGrandpre, Michael D.; Beatty, Cory; Timmermans, Mary-Louise; Krishfield, Richard A.; Toole, John M.; Laney, Samuel R. (John Wiley & Sons, 2017-02-25)
      Understanding the physical and biogeochemical processes that control CO2 and dissolved oxygen (DO) dynamics in the Arctic Ocean (AO) is crucial for predicting future air-sea CO2 fluxes and ocean acidification. Past studies ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo