Complexities in barrier island response to sea level rise : insights from numerical model experiments, North Carolina Outer Banks

View/ Open
Date
2010-07-09Author
Moore, Laura J.
Concept link
List, Jeffrey H.
Concept link
Williams, S. Jeffress
Concept link
Stolper, David
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/3897As published
https://doi.org/10.1029/2009JF001299DOI
10.1029/2009JF001299Abstract
Using a morphological-behavior model to conduct sensitivity experiments, we investigate the sea level rise response of a complex coastal environment to changes in a variety of factors. Experiments reveal that substrate composition, followed in rank order by substrate slope, sea level rise rate, and sediment supply rate, are the most important factors in determining barrier island response to sea level rise. We find that geomorphic threshold crossing, defined as a change in state (e.g., from landward migrating to drowning) that is irreversible over decadal to millennial time scales, is most likely to occur in muddy coastal systems where the combination of substrate composition, depth-dependent limitations on shoreface response rates, and substrate erodibility may prevent sand from being liberated rapidly enough, or in sufficient quantity, to maintain a subaerial barrier. Analyses indicate that factors affecting sediment availability such as low substrate sand proportions and high sediment loss rates cause a barrier to migrate landward along a trajectory having a lower slope than average barrier island slope, thereby defining an “effective” barrier island slope. Other factors being equal, such barriers will tend to be smaller and associated with a more deeply incised shoreface, thereby requiring less migration per sea level rise increment to liberate sufficient sand to maintain subaerial exposure than larger, less incised barriers. As a result, the evolution of larger/less incised barriers is more likely to be limited by shoreface erosion rates or substrate erodibility making them more prone to disintegration related to increasing sea level rise rates than smaller/more incised barriers. Thus, the small/deeply incised North Carolina barriers are likely to persist in the near term (although their long-term fate is less certain because of the low substrate slopes that will soon be encountered). In aggregate, results point to the importance of system history (e.g., previous slopes, sediment budgets, etc.) in determining migration trajectories and therefore how a barrier island will respond to sea level rise. Although simple analytical calculations may predict barrier response in simplified coastal environments (e.g., constant slope, constant sea level rise rate, etc.), our model experiments demonstrate that morphological-behavior modeling is necessary to provide critical insights regarding changes that may occur in environments having complex geometries, especially when multiple parameters change simultaneously.
Description
Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): F03004, doi:10.1029/2009JF001299.
Collections
Suggested Citation
Journal of Geophysical Research 115 (2010): F03004Related items
Showing items related by title, author, creator and subject.
-
Mesodinium rubrum exhibits genus-level but not species-level cryptophyte prey selection
Peltomaa, Elina; Johnson, Matthew D. (Inter-Research, 2017-02-09)The marine ciliate Mesodinium rubrum is known to form large non-toxic red water blooms in estuarine and coastal upwelling regions worldwide. This ciliate relies predominantly upon photosynthesis by using plastids and other ... -
Mass-induced sea level change in the northwestern North Pacific and its contribution to total sea level change
Cheng, Xuhua; Li, Lijuan; Du, Yan; Wang, Jing; Huang, Rui Xin (John Wiley & Sons, 2013-08-02)Over the period 2003–2011, the Gravity Recovery and Climate Experiment (GRACE) satellite pair revealed a remarkable variability in mass-induced sea surface height (MSSH) in the northwestern North Pacific. A significant ... -
PSP toxin levels and plankton community composition and abundance in size-fractionated vertical profiles during spring/summer blooms of the toxic dinoflagellate Alexandrium fundyense in the Gulf of Maine and on Georges Bank, 2007, 2008, and 2010 : 1. Toxin levels
Deeds, Jonathan R.; Petitpas, Christian M.; Shue, Vangie; White, Kevin D.; Keafer, Bruce A.; McGillicuddy, Dennis J.; Milligan, Peter J.; Anderson, Donald M.; Turner, Jefferson T. (Elsevier, 2013-04-12)As part of the NOAA ECOHAB funded Gulf of Maine Toxicity (GOMTOX)1 project, we determined Alexandrium fundyense abundance, paralytic shellfish poisoning (PSP) toxin composition, and concentration in quantitatively-sampled ...