Volume change associated with formation and dissociation of hydrate in sediment
Citable URI
https://hdl.handle.net/1912/3864As published
https://doi.org/10.1029/2009GC002667DOI
10.1029/2009GC002667Abstract
Gas hydrate formation and dissociation in sediments are accompanied by changes in the bulk volume of the sediment and can lead to changes in sediment properties, loss of integrity for boreholes, and possibly regional subsidence of the ground surface over areas where methane might be produced from gas hydrate in the future. Experiments on sand, silts, and clay subject to different effective stress and containing different saturations of hydrate formed from dissolved phase tetrahydrofuran are used to systematically investigate the impact of gas hydrate formation and dissociation on bulk sediment volume. Volume changes in low specific surface sediments (i.e., having a rigid sediment skeleton like sand) are much lower than those measured in high specific surface sediments (e.g., clay). Early hydrate formation is accompanied by contraction for all soils and most stress states in part because growing gas hydrate crystals buckle skeletal force chains. Dilation can occur at high hydrate saturations. Hydrate dissociation under drained, zero lateral strain conditions is always associated with some contraction, regardless of soil type, effective stress level, or hydrate saturation. Changes in void ratio during formation-dissociation decrease at high effective stress levels. The volumetric strain during dissociation under zero lateral strain scales with hydrate saturation and sediment compressibility. The volumetric strain during dissociation under high shear is a function of the initial volume average void ratio and the stress-dependent critical state void ratio of the sediment. Other contributions to volume reduction upon hydrate dissociation are related to segregated hydrate in lenses and nodules. For natural gas hydrates, some conditions (e.g., gas production driven by depressurization) might contribute to additional volume reduction by increasing the effective stress.
Description
Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q03007, doi:10.1029/2009GC002667.
Collections
Suggested Citation
Article: Lee, J. Y., Santamarina, J. Carlos, Ruppel, Carolyn D., "Volume change associated with formation and dissociation of hydrate in sediment", Geochemistry Geophysics Geosystems 11 (2010): Q03007, DOI:10.1029/2009GC002667, https://hdl.handle.net/1912/3864Related items
Showing items related by title, author, creator and subject.
-
Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough
Santamarina, J. Carlos; Dai, Sheng; Terzariol, Marco; Jang, J.; Waite, William F.; Winters, William J.; Nagao, Jiro; Yoneda, Jun; Konno, Yoshihiro; Fujii, Tetsuya; Suzuki, K. (Elsevier, 2015-03-01)Natural hydrate-bearing sediments from the Nankai Trough, offshore Japan, were studied using the Pressure Core Characterization Tools (PCCTs) to obtain geomechanical, hydrological, electrical, and biological properties ... -
Physical properties of hydrate-bearing sediments
Waite, William F.; Santamarina, J. Carlos; Cortes, Douglas D.; Dugan, Brandon; Espinoza, D. N.; Germaine, J.; Jang, J.; Jung, J. W.; Kneafsey, Timothy J.; Shin, H.; Soga, K.; Winters, William J.; Yun, Tae Sup (American Geophysical Union, 2009-12-31)Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena ... -
Characterization of methane hydrate host sediments using synchrotron-computed microtomography (CMT)
Jones, Keith W.; Feng, Huan; Tomov, Stanmire; Winters, William J.; Prodanovic, Masa; Mahajan, Devinder (Elsevier B.V., 2006-10-16)The hydrate–sediment interaction is an important aspect of gas hydrate studies that needs further examination. We describe here the applicability of the computed microtomography (CMT) technique that utilizes an intense ...