• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Geomicrobiology of nitrogen in a coastal aquifer : isotopic and molecular methods to examine nitrification and denitrification in groundwater

    Thumbnail
    View/Open
    Rogers_thesis.pdf (11.60Mb)
    Date
    2010-06
    Author
    Rogers, Daniel R.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/3817
    Location
    41°34’49”N, 70°31’27”W
    Waquoit, MA
    DOI
    10.1575/1912/3817
    Keyword
     Groundwater; Water; Nitrogen content 
    Abstract
    Excess nitrogen input is deleterious to coastal waters, resulting in deterioration of the water quality, increases in harmful algal blooms and disease in commercial fish stocks. A significant portion of this nitrogen enters coastal waters through groundwater systems. Here we use isotopic and molecular biological methods to identify the populations of nitrifiers and denitrifiers, where they occur, and what levels of activity are present through the upper four meters of a coastal groundwater system. This work shows two different populations of putative ammonia-oxidizing archaea (AOA) based on the ammonia monooxygenase gene (amoA), one shallow population most closely related to open ocean water column-like sequences and a deeper population that is more closely related to estuarine-like AOA. Interestingly, while the surface population has a potential nitrification rates (456 pmol g-1 sediment day-1) similar to marine sediments, the deeper population does not show detectable evidence of nitrification. Between these two archaeal populations resides an active population of ammonia-oxidizing bacteria with similar nitrification rates as the surface AOA population. The upper meter of the aquifer is also an active area of denitrification as evidenced by the coincident drop in nitrate concentration and increase in both δ15N (up to + 20.1‰) and δ18O (up to + 11.7‰), characteristic of groundwater affected by denitrification. 16S rRNA gene surveys of the organisms present in the upper meter also are similar to soil/sediment type environments including many potential denitrifiers. However, nitrite reductase, nirS and nirK, genes were also recovered from the sediments with nirK dominating in the surface sediments. This contrasts with the deep salt wedge, where the microbial community 16S rRNA genes appear more closely related to marine or reducing sediment/wastewater type organisms, and nirS genes become the dominant denitrification gene.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2010
    Collections
    • WHOI Theses
    • Marine Chemistry and Geochemistry (MC&G)
    Suggested Citation
    Thesis: Rogers, Daniel R., "Geomicrobiology of nitrogen in a coastal aquifer : isotopic and molecular methods to examine nitrification and denitrification in groundwater", 2010-06, DOI:10.1575/1912/3817, https://hdl.handle.net/1912/3817
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Effects of watershed land use on nitrogen concentrations and δ15 Nitrogen in groundwater 

      Cole, Marci L.; Kroeger, Kevin D.; McClelland, James W.; Valiela, Ivan (2005-07-18)
      Eutrophication is a major agent of change affecting freshwater, estuarine, and marine systems. It is largely driven by transportation of nitrogen from natural and anthropogenic sources. Research is needed to quantify ...
    • Thumbnail

      Investigating boron isotopes for identifying nitrogen sources supplied by submarine groundwater discharge to coastal waters 

      Tamborski, Joseph; Brown, Caitlin; Bokuniewicz, Henry J.; Cochran, J. Kirk; Rasbury, E. Troy (Frontiers Media, 2020-08-11)
      Stable isotopes of oxygen, nitrogen, and boron were used to identify the sources of nitrate (NO3–) in submarine groundwater discharge (SGD) into a large tidal estuary (Long Island Sound, NY, United States). Potential ...
    • Thumbnail

      Molecular signature of organic nitrogen in septic-impacted groundwater 

      Arnold, William A.; Longnecker, Krista; Kroeger, Kevin D.; Kujawinski, Elizabeth B. (2014-08)
      Dissolved inorganic and organic nitrogen levels are elevated in aquatic systems due to anthropogenic activities. Dissolved organic nitrogen (DON) arises from various sources, and its impact could be more clearly constrained ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo