Influence of fore-arc structure on the extent of great subduction zone earthquakes
Citable URI
https://hdl.handle.net/1912/3624As published
https://doi.org/10.1029/2007JB004944DOI
10.1029/2007JB004944Abstract
Structural features associated with fore-arc basins appear to strongly influence the rupture processes of large subduction zone earthquakes. Recent studies demonstrated that a significant percentage of the global seismic moment release on subduction zone thrust faults is concentrated beneath the gravity lows resulting from fore-arc basins. To better determine the nature of this correlation and to examine its effect on rupture directivity and termination, we estimated the rupture areas of a set of Mw 7.5–8.7 earthquakes that occurred in circum-Pacific subduction zones. We compare synthetic and observed seismograms by measuring frequency-dependent amplitude and arrival time differences of the first orbit Rayleigh waves. At low frequencies, the amplitude anomalies primarily result from the spatial and temporal extent of the rupture. We then invert the amplitude and arrival time measurements to estimate the second moments of the slip distribution which describe the rupture length, width, duration, and propagation velocity of each earthquake. Comparing the rupture areas to the trench-parallel gravity anomaly (TPGA) above each rupture, we find that in 11 of the 15 events considered in this study the TPGA increases between the centroid and the limits of the rupture. Thus local increases in TPGA appear to be related to the physical conditions along the plate interface that favor rupture termination. Owing to the inherently long timescales required for fore-arc basin formation, the correlation between the TPGA field and rupture termination regions indicates that long-lived material heterogeneity rather than short timescale stress heterogeneities are responsible for arresting most great subduction zone ruptures.
Description
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): B09301, doi:10.1029/2007JB004944.
Collections
Suggested Citation
Journal of Geophysical Research 112 (2007): B09301Related items
Showing items related by title, author, creator and subject.
-
Stress interaction between subduction earthquakes and forearc strike-slip faults : modeling and application to the northern Caribbean plate boundary
ten Brink, Uri S.; Lin, Jian (American Geophysical Union, 2004-12-24)Strike-slip faults in the forearc region of a subduction zone often present significant seismic hazard because of their proximity to population centers. We explore the interaction between thrust events on the subduction ... -
Along-strike structure of the Costa Rican convergent margin from seismic a refraction/reflection survey : evidence for underplating beneath the inner forearc
St. Clair, James; Holbrook, W. Steven; Van Avendonk, Harm J. A.; Lizarralde, Daniel (John Wiley & Sons, 2016-02-24)The convergent margin offshore Costa Rica shows evidence of subsidence due to subduction erosion along the outer forearc and relatively high rates of uplift (∼3–6 mm/yr) along the coast. Recently erupted arc lavas exhibit ... -
Post-seismic viscoelastic deformation and stress transfer after the 1960 M9.5 Valdivia, Chile earthquake : effects on the 2010 M8.8 Maule, Chile earthquake
Ding, Min; Lin, Jian (Oxford University Press, 2014-03-04)After the 1960 M9.5 Valdivia, Chile earthquake, three types of geodetic observations were made during four time periods at nearby locations. These post-seismic observations were previously explained by post-seismic afterslip ...