Submarine back-arc lava with arc signature : Fonualei Spreading Center, northeast Lau Basin, Tonga

View/ Open
Date
2008-08-30Author
Keller, Nicole S.
Concept link
Arculus, Richard J.
Concept link
Hermann, Jörg
Concept link
Richards, Simon
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/3611As published
https://doi.org/10.1029/2007JB005451DOI
10.1029/2007JB005451Keyword
Lau Basin; Back-arc basin; SubductionAbstract
We present major, volatile, and trace elements for quenched glasses from the Fonualei Spreading Center, a nascent spreading system situated very close to the Tofua Volcanic Arc (20 km at the closest), in the northeast Lau Basin. The glasses are basalts and basaltic andesites and are inferred to have originated from a relatively hot and depleted mantle wedge. The Fonualei Spreading Center shows island arc basalt (IAB) affinities, indistinguishable from the Tofua Arc. Within the Fonualei Spreading Center no geochemical trends can be seen with depth to the slab and/or distance to the arc, despite a difference in depth to the slab of >50 km. Therefore we infer that all the subduction-related magmatism is captured by the back arc as the adjacent arc is shut off. There is a sharp contrast between the main spreading area of the Fonualei Spreading Center (FSC) and its northernmost termination, the Mangatolu Triple Junction (MTJ). The MTJ samples are characteristic back-arc basin basalts (BABB). We propose that the MTJ and FSC have different mantle sources, reflecting different mantle origins and/or different melting processes. We also document a decrease in mantle depletion from the south of the FSC to the MTJ, which is the opposite to what has been documented for the rest of the Lau Basin where depletion generally increases from south to north. We attribute this reverse trend to the influx of less depleted mantle through the tear between the Australian and the Pacific plates, at the northern boundary of the Lau Basin.
Description
Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): B08S07, doi:10.1029/2007JB005451.
Collections
Suggested Citation
Journal of Geophysical Research 113 (2008): B08S07Related items
Showing items related by title, author, creator and subject.
-
Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea : indicators of sub-seafloor hydrothermal processes in back-arc basins
Craddock, Paul R.; Bach, Wolfgang; Seewald, Jeffrey S.; Rouxel, Olivier J.; Reeves, Eoghan P.; Tivey, Margaret K. (2010-05-02)Rare earth element (REE) concentrations are reported for a large suite of seafloor vent fluids from four hydrothermal systems in the Manus back–arc basin (Vienna Woods, PACMANUS, DESMOS and SuSu Knolls vent areas). Sampled ... -
Variable morphologic expression of volcanic, tectonic, and hydrothermal processes at six hydrothermal vent fields in the Lau back-arc basin
Ferrini, Vicki L.; Tivey, Margaret K.; Carbotte, Suzanne M.; Martinez, Fernando; Roman, Christopher N. (American Geophysical Union, 2008-07-26)Ultrahigh-resolution bathymetric maps (25 cm grid) are used to quantify the physical dimensions of and spatial relationships between tectonic, volcanic, and hydrothermal features at six hydrothermal vent fields in the Lau ... -
Insights to magmatic–hydrothermal processes in the Manus back-arc basin as recorded by anhydrite
Craddock, Paul R.; Bach, Wolfgang (2010-06-16)Microchemical analyses of rare earth element (REE) concentrations and Sr and S isotope ratios of anhydrite are used to identify sub–seafloor processes governing the formation of hydrothermal fluids in the convergent ...