A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter

View/ Open
Date
2007-11-03Author
Frew, Nelson M.
Concept link
Glover, David M.
Concept link
Bock, Erik J.
Concept link
McCue, Scott J.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/3560As published
https://doi.org/10.1029/2006JC003819DOI
10.1029/2006JC003819Abstract
A new approach to estimating air-sea gas transfer velocities based on normalized backscatter from the dual-frequency TOPEX and Jason-1 altimeters is described. The differential scattering of Ku-band (13.6 GHz) and C-band (5.3 GHz) microwave pulses is used to isolate the contribution of small-scale waves to mean square slope and gas transfer. Mean square slope is derived for the nominal wave number range 40–100 rad m−1 by differencing mean square slope estimates computed from the normalized backscatter in each band, using a simple geometric optics model. Model parameters for calculating the differenced mean square slope over this wave number range are optimized using in situ optical slope measurements. An empirical relation between gas transfer velocity and mean square slope, also based on field measurements, is then used to derive gas transfer velocities. Initial results demonstrate that the calculated transfer velocities exhibit magnitudes and a dynamic range which are generally consistent with existing field measurements. The new algorithm is used to construct monthly global maps of gas transfer velocity and to illustrate seasonal transfer velocity variations over a 1-year period. The measurement precision estimated from >106 duplicate observations of the sea surface by TOPEX and Jason-1 altimeters orbiting in tandem is better than 10%. The estimated overall uncertainty of the method is ±30%. The long-term global, area-weighted, Schmidt number corrected, mean gas transfer velocity is 13.7 ± 4.1 cm h−1. The new approach, based on surface roughness, represents a potential alternative to commonly used parameterizations based on wind speed.
Description
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C11003, doi:10.1029/2006JC003819.
Suggested Citation
Journal of Geophysical Research 112 (2007): C11003Related items
Showing items related by title, author, creator and subject.
-
Altimeter processing tools for analyzing mesoscale ocean features
Caruso, Michael J.; Sirkes, Ziv; Flament, Pierre J.; Baker, M. K. (Woods Hole Oceanographic Institution, 1990-09)Satellite altimeters provide many opportunities for oceanographers to supplement their research with a valuable new data set. The recent GEOSAT exact repeat mission is the first of several altimeter missions proposed ... -
Dynamics of the Antarctic circumpolar current : evidence for topographic effects from altimeter data and numerical model output
Gille, Sarah T. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1995-02)Geosat altimeter data and numerical model output are used to examine the circulation and dynamics of the Antarctic Circumpolar Current (ACC). The mean sea surface height across the ACC has been reconstructed from height ... -
Collinear analysis of altimeter data in the Bering Sea
Barber, Deborah K. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1989-09)Eighteen months of sea surface height data from the GEOSAT altimeter along collinear subtracks were analyzed for information on the circulation pattern in the Bering Sea. Seventy subtracks from both ascending and descending ...