A general inversion for end-member ratios in binary mixing systems
Citable URI
https://hdl.handle.net/1912/348As published
https://doi.org/10.1029/2005GC000975DOI
10.1029/2005GC000975Keyword
Inverse theory; Isotopes; MixingAbstract
Binary mixing is one of the most common models used to explain variations in geochemical data. When the data being modeled are ratios of elements or isotopes, the mixtures follow hyperbolic trends with curvatures that depend on a cross-term representing the relative concentrations of the elements or isotopes under consideration in the mixing components. The inverse problem of estimating mixing components is difficult because of the cross-term in the hyperbolic equation, which requires the use of nonlinear methods to estimate the mixing parameters, and because the end-member ratio values are intrinsically underdetermined unless the mixing proportions of the samples are known a priori, which is not generally the case. I use maximum likelihood methods to address these issues and derive a general inversion for binary mixing model parameters from ratio-ratio data. I apply the method to synthetic test data and a global compilation of 230Th/232Th versus 87Sr/86Sr data from oceanic basalts and find that the concentration ratio parameter is well-constrained by the inversion while the end-member ratio estimates are strongly dependent on the initial guesses used to start the iterative solver, reflecting the underdetermined nature of the end-member positions on the mixing hyperbola. Monte Carlo methods that randomly perturb the initial guesses can be used to improve error estimates, and goodness-of-fit statistics can be used to assess the performance of the mixing model for explaining data variance.
Description
Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q11007, doi:10.1029/2005GC000975.
Collections
Suggested Citation
Geochemistry Geophysics Geosystems 6 (2005): Q11007Related items
Showing items related by title, author, creator and subject.
-
Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma
Fan, Wenyuan; McGuire, Jeffrey J. (Oxford University Press, 2018-05-21)An earthquake rupture process can be kinematically described by rupture velocity, duration and spatial extent. These key kinematic source parameters provide important constraints on earthquake physics and rupture dynamics. ... -
Reconstructing the ocean's interior from surface data
Wang, Jinbo; Flierl, Glenn R.; LaCasce, Joseph H.; McClean, Julie L.; Mahadevan, Amala (American Meteorological Society, 2013-08)A new method is proposed for extrapolating subsurface velocity and density fields from sea surface density and sea surface height (SSH). In this, the surface density is linked to the subsurface fields via the surface ... -
Conductivity structure of the lithosphere-asthenosphere boundary beneath the eastern North American margin
Attias, Eric; Evans, Rob L.; Naif, Samer; Elsenbeck, James R.; Key, Kerry (John Wiley & Sons, 2017-02-25)Tectonic plate motion and mantle dynamics processes are heavily influenced by the characteristics of the lithosphere-asthenosphere boundary (LAB), yet this boundary remains enigmatic regarding its properties and geometry. ...