• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Changes in midgut gland morphology and digestive enzyme activities associated with development in early stages of the American lobster Homarus americanus

    Thumbnail
    View/Open
    Biesiot_thesis.pdf (27.25Mb)
    Date
    1986-05
    Author
    Biesiot, Patricia Marie  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/3478
    DOI
    10.1575/1912/3478
    Keyword
    Lobsters
    Abstract
    The development of the digestive system, specifically in relation to the midgut gland (hepatopancreas). in early life history stages of the American lobster Homarus americanus is examined in the present study by means of two separate but complementary approaches. A histological study on the light microscope level details the morphological changes which take ·place among the different cell types which form the midgut gland. Included in this portion of the study are scanning electron micrographs of the midgut gland of stage IV larva. Secondly, a biochemical study correlates changes in the activities of digestive protease, lipase, and amylase with the observed changes in the cells of the midgut gland. A sensitive method for detection of crustacean lipase was developed for this study. In order to optimize the assay conditions for measurement of digestive enzyme activities, a series of control tests was performed to determine the effects of several physical and chemical factors. The developmental stages of the lobster which are examined in these studies include: well-advanced embryos at approximately three days prior to hatching, hatching prelarvae, newly hatched and intermolt stage I larvae, intermolt stage II, Ill, and IV larvae, and intermolt stage V and VI postlarvae. Particular attention is paid to specific transitional stages during development. These include: (1) the changeover from yolk metabolism by the embryos to the dependence on exogenous food by newly hatched larvae; (2) the alteration in body form which occurs at the molt from larval stage III to IV; and (3) the change in habitat from the plankton to the benthos which occurs at the molt from stage IV to V. Results of the present study demonstrate that the R-cells (resorptive cells) of the earliest developmental stages, embryo through larval stage III, do not show the characteristic morphology classically ascribed to this cell type. Presumably because young lobsters do not begin to store excess lipids derived from the diet until stage IV, the R-cells do not contain large numbers of lipid vacuoles. By stage VI, however, the i-cells achieve the classic appearance. A previously unreported function for R-cells, that of storage of lipid derived from yolk metabolism in the embryo, is described. F-cells (digestive enzyme synthesizing cells) are present in the midgut gland of embryos a few days prior to the hatch while B-cells (enzyme secreting cells) have developed by the time of hatching. Thus, morphologically the stage I lobster larva appears to possess digestive capabilities prior to ingestion of the first meal. Changes in digestive enzyme activities during early development correlate well with the morphological changes observed in the midgut gland. Activities of protease, lipase, and amylase are very low in the well-advanced embryo and increase slightly by the hatching stage. Enzyme activities more than double by the time the stage I larva attains intermolt, regardless of whether the larva is fed or fasted. Digestive enzyme activities increase further by the time the stage II larva reaches intermolt; in general there is no significant difference in the levels of enzyme activities measured in the older stages (II through V). The results of a more detailed time course examination of the levels of digestive enzyme activities in relation" to first feeding by the stage I larvae are presented. Although there is a trend for slightly increased protease and amylase activities as the stage I larvae get older. the lipase activity is constant. Lobster larvae normally hatch in late spring and early summer but larvae can be induced to hatch during the winter by maintaining the eggs at higher than ambient water " temperatures. There is no consistent difference in digestive enzyme activities measured for larvae which hatch during the summer compared to those which hatch during the winter. The influence of molt stage on the activity of digestive enzymes in wild caught stage IV larvae is also discussed. Only minor variations in lipase and amylase activity are detected during intermolt and premolt and in general there is no significant effect. Protease activity is significantly greater at Do. This work describes new findings on several aspects of digestion among early life history stages of a marine decapod crustacean and has added to our understanding of the functional morphology of the midgut gland during early development.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1986
    Collections
    • Biology
    • WHOI Theses
    Suggested Citation
    Thesis: Biesiot, Patricia Marie, "Changes in midgut gland morphology and digestive enzyme activities associated with development in early stages of the American lobster Homarus americanus", 1986-05, DOI:10.1575/1912/3478, https://hdl.handle.net/1912/3478
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Biochemical changes associated with embryonic and larval development in the American lobster Homarus americanus Milne Edwards 

      Sasaki, Glenn Craig (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1984-01)
      Proximate analysis was carried out on developing Homarus americanus Milne Edwards larvae and eggs. Lipids were further analyzed for class and fatty acid composition. During embryogenesis, triacylglycerol supplied most ...
    • Thumbnail

      Developmental changes in the structure and function of lobster hemocyanin 

      Olson, Kirby S. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1991-02)
      Respiratory systems function as one of the interfaces between an organism and its environment; the flexibility of this system may therefore constrain the distributional limits of the organism. The respiratory system of ...
    • Thumbnail

      Reducing effort in the U.S. American lobster (Homarus americanus) fishery to prevent North Atlantic right whale (Eubalaena glacialis) entanglements may support higher profits and long-term sustainability 

      Myers, Hannah J.; Moore, Michael J. (Woods Hole Oceanographic Institution, 2019-11-27)
      Supplemental data for Reducing effort in the U.S. American lobster (Homarus americanus) fishery to prevent North Atlantic right whale (Eubalaena glacialis) entanglements may support higher profits and long-term sustainability. ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo