• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction

    Thumbnail
    View/Open
    2002RG000117.pdf (5.552Mb)
    Date
    2003-11-20
    Author
    Ito, Garrett T.  Concept link
    Lin, Jian  Concept link
    Graham, David W.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/3465
    As published
    https://doi.org/10.1029/2002RG000117
    Keyword
     Hot spot; Mid-ocean ridge; Mantle plume; Mantle convection; MORB; OIB 
    Abstract
    Hot spot–mid-ocean ridge interactions cause many of the largest structural and chemical anomalies in Earth's ocean basins. Correlated geophysical and geochemical anomalies are widely explained by mantle plumes that deliver hot and compositionally distinct material toward and along mid-ocean ridges. Compositional anomalies are seen in trace element and isotope ratios, while elevated mantle temperatures are suggested by anomalously thick crust, low-density mantle, low mantle seismic velocities, and elevated degrees and pressures of melting. Several geodynamic laboratory and modeling studies predict that the width over which plumes expand along the ridge axis increases with plume flux and excess buoyancy and decreases with plate spreading rate, plume viscosity, and plume-ridge separation. Key aspects of the theoretical predictions are supported by observations at several prominent hot spot–ridge systems. Still, many basic aspects of plume-ridge interaction remain enigmatic. Outstanding problems pertain to whether plumes flow toward and along mid-ocean ridges in narrow pipe-like channels or as broad expanding gravity currents, the origin of geochemical mixing trends observed along ridges, and how mantle plumes alter the geometry of the mid-ocean ridge plate boundary, as well as the origin of other ridge axis anomalies not obviously related to mantle plumes.
    Description
    Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 41 (2003): 1017, doi:10.1029/2002RG000117.
    Collections
    • Geology and Geophysics (G&G)
    Suggested Citation
    Reviews of Geophysics 41 (2003): 1017
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Interactions between mantle plumes and mid-ocean ridges : constraints from geophysics, geochemistry, and geodynamical modeling 

      Georgen, Jennifer E. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2001-09)
      This thesis studies interactions between mid-ocean ridges and mantle plumes using geophysics, geochemistry, and geodynamical modeling. Chapter 1 investigates the effects of the Marion and Bouvet hotspots on the ultra-slow ...
    • Thumbnail

      Mantle plume-midocean ridge interaction : geophysical observations and mantle dynamics 

      Ito, Garrett T. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1996-09)
      We analyze bathymetric and gravity anomalies at five plume-ridge systems to constrain crustal and mantle density structure at these prominent oceanic features. Numerical models are then used to explore the physical ...
    • Thumbnail

      Asymmetric shallow mantle structure beneath the Hawaiian Swell—evidence from Rayleigh waves recorded by the PLUME network 

      Laske, Gabi; Markee, Amanda; Orcutt, John A.; Wolfe, Cecily J.; Collins, John A.; Solomon, Sean C.; Detrick, Robert S.; Bercovici, David; Hauri, Erik H. (John Wiley & Sons, 2011-10-31)
      We present models of the 3-D shear velocity structure of the lithosphere and asthenosphere beneath the Hawaiian hotspot and surrounding region. The models are derived from long-period Rayleigh-wave phase velocities that ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo