• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean

    Thumbnail
    View/Open
    Article (972.8Kb)
    This table contains the new isotopic data for the KNR159 cores completed by the date of publication of Curry and Oppo (2005). (40.90Kb)
    Additional information (4.517Kb)
    Three sections from the western Atlantic Ocean: 1) a section based on the modern δ13C values measured in the water column (Kroopnick, 1985); 2) a section based on the Holocene Cibicidoides spp. δ13C values presented in Tables 1 and 2 of Curry and Oppo (2005); and 3) a section based on the glacial Cibicidoides spp. δ13C values presented in Tables 1 and 2 of Curry and Oppo (2005). (699.9Kb)
    Date
    2005-03-18
    Author
    Curry, William B.  Concept link
    Oppo, Delia W.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/3432
    As published
    https://doi.org/10.1029/2004PA001021
    DOI
    10.1029/2004PA001021
    Keyword
     Ice age; Ocean circulation; Ocean chemistry 
    Abstract
    Oxygen and carbon isotopic data were produced on the benthic foraminiferal taxa Cibicidoides and Planulina from 25 new piston cores, gravity cores, and multicores from the Brazil margin. The cores span water depths from about 400 to 3000 m and intersect the major water masses in this region. These new data fill a critical gap in the South Atlantic Ocean and provide the motivation for updating the classic glacial western Atlantic δ13C transect of Duplessy et al. (1988). The distribution of δ13C of ΣCO2 requires the presence of three distinct water masses in the glacial Atlantic Ocean: a shallow (∼1000 m), southern source water mass with an end-member δ13C value of about 0.3–0.5‰ VPDB, a middepth (∼1500 m), northern source water mass with an end-member value of about 1.5‰, and a deep (>2000 m), southern source water with an end-member value of less than −0.2‰, and perhaps as low as the −0.9‰ values observed in the South Atlantic sector of the Southern Ocean (Ninnemann and Charles, 2002). The origins of the water masses are supported by the meridional gradients in benthic foraminiferal δ18O. A revised glacial section of deep water δ13C documents the positions and gradients among these end-member intermediate and deep water masses. The large property gradients in the presence of strong vertical mixing can only be maintained by a vigorous overturning circulation.
    Description
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA1017, doi:10.1029/2004PA001021.
    Collections
    • Geology and Geophysics (G&G)
    Suggested Citation
    Paleoceanography 20 (2005): PA1017
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean : a modeling study 

      Arruda, R.; Calil, Paulo H. R.; Bianchi, A. A.; Doney, Scott C.; Gruber, Nicolas; Lima, Ivan D.; Turi, G. (Copernicus Publications on behalf of the European Geosciences Union, 2015-10-12)
      We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air-sea CO2 fluxes in the ...
    • Thumbnail

      Understanding the ocean carbon and sulfur cycles in the context of a variable ocean : a study of anthropogenic carbon storage and dimethylsulfide production in the Atlantic Ocean 

      Levine, Naomi M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-02)
      Anthropogenic activity is rapidly changing the global climate through the emission of carbon dioxide. Ocean carbon and sulfur cycles have the potential to impact global climate directly and through feedback loops. Numerical ...
    • Thumbnail

      Ocean Network Information Center (OCEANIC) developing an online ocean information system 

      Churgin, James (IAMSLIC, 1989)
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo