Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean

View/ Open
Date
2007-10-06Author
Thomas, Helmuth
Concept link
Prowe, A. E. Friederike
Concept link
van Heuven, Steven
Concept link
Bozec, Yann
Concept link
Baar, Hein J. W. de
Concept link
Schiettecatte, Laure-Sophie
Concept link
Suykens, Kim
Concept link
Kone, Mathieu
Concept link
Borges, Alberto V.
Concept link
Lima, Ivan D.
Concept link
Doney, Scott C.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/3404As published
https://doi.org/10.1029/2006GB002825DOI
10.1029/2006GB002825Keyword
Anthropogenic CO2; Revelle factor; North SeaAbstract
New observations from the North Sea, a NW European shelf sea, show that between 2001 and 2005 the CO2 partial pressure (pCO2) in surface waters rose by 22 μatm, thus faster than atmospheric pCO2, which in the same period rose approximately 11 μatm. The surprisingly rapid decline in air-sea partial pressure difference (ΔpCO2) is primarily a response to an elevated water column inventory of dissolved inorganic carbon (DIC), which, in turn, reflects mostly anthropogenic CO2 input rather than natural interannual variability. The resulting decline in the buffering capacity of the inorganic carbonate system (increasing Revelle factor) sets up a theoretically predicted feedback loop whereby the invasion of anthropogenic CO2 reduces the ocean's ability to uptake additional CO2. Model simulations for the North Atlantic Ocean and thermodynamic principles reveal that this feedback should be stronger, at present, in colder midlatitude and subpolar waters because of the lower present-day buffer capacity and elevated DIC levels driven either by northward advected surface water and/or excess local air-sea CO2 uptake. This buffer capacity feedback mechanism helps to explain at least part of the observed trend of decreasing air-sea ΔpCO2 over time as reported in several other recent North Atlantic studies.
Description
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB4001, doi:10.1029/2006GB002825.
Collections
Suggested Citation
Article: Thomas, Helmuth, Prowe, A. E. Friederike, van Heuven, Steven, Bozec, Yann, Baar, Hein J. W. de, Schiettecatte, Laure-Sophie, Suykens, Kim, Kone, Mathieu, Borges, Alberto V., Lima, Ivan D., Doney, Scott C., "Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean", Global Biogeochemical Cycles 21 (2007): GB4001, DOI:10.1029/2006GB002825, https://hdl.handle.net/1912/3404Related items
Showing items related by title, author, creator and subject.
-
The metabolic response of thecosome pteropods from the North Atlantic and North Pacific oceans to high CO2 and low O2
Maas, Amy E.; Lawson, Gareth L.; Wang, Zhaohui Aleck (Copernicus Publications on behalf of the European Geosciences Union, 2016-11-17)As anthropogenic activities directly and indirectly increase carbon dioxide (CO2) and decrease oxygen (O2) concentrations in the ocean system, it becomes important to understand how different populations of marine animals ... -
A role for North Pacific salinity in stabilizing North Atlantic climate
Keigwin, Lloyd D.; Cook, Mea S. (American Geophysical Union, 2007-07-11)A simple ocean/atmosphere feedback may reduce the amplitude of climate variability in around the North Atlantic during interglacial compared to glacial states. When climate is warm in the North Atlantic region, the ... -
A science plan for a collaborative international research program on the coupled North Atlantic-Arctic system, a report of a Planning Workshop for an International Research Program on the Coupled North Atlantic-Arctic System developed from a workshop held in Arlington, VA 14-16 April 2014
Hofmann, Eileen E.; St. John, Mike; Benway, Heather M. (Ocean Carbon & Biogeochemistry Program, 2015)This North Atlantic-Arctic science plan is derived from an international workshop held in April 2014 with support from the National Science Foundation Division of Ocean Sciences and the European Union (EU). The workshop ...