Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation
Citable URI
https://hdl.handle.net/1912/3403As published
https://doi.org/10.1029/2006GB002762DOI
10.1029/2006GB002762Keyword
Climate; Biological pump; Ecosystem modelAbstract
Recent upward revisions in key sink/source terms for fixed nitrogen (N) in the oceans imply a short residence time and strong negative feedbacks involving denitrification and N fixation to prevent large swings in the ocean N inventory over timescales of a few centuries. We tested the strength of these feedbacks in a global biogeochemical elemental cycling (BEC) ocean model that includes water column denitrification and an explicit N fixing phytoplankton group. In the northern Indian Ocean and over longer timescales in the tropical Atlantic, we find strong stabilizing feedbacks that minimize changes in marine N inventory over timescales of ∼30–200 years. In these regions high atmospheric dust/iron inputs lead to phosphorus limitation of diazotrophs, and thus a tight link between N fixation and surface water N/P ratios. Maintenance of the oxygen minimum zones in these basins depends on N fixation driven export. The stabilizing feedbacks in other regions are significant but weaker owing to iron limitation of the diazotrophs. Thus Fe limitation appears to restrict the ability of N fixation to compensate for changes in denitrification in the current climate, perhaps leading the oceans to lose fixed N. We suggest that iron is the ultimate limiting nutrient leading to nitrogen being the proximate limiting nutrient over wide regions today. Iron stress was at least partially alleviated during more dusty, glacial times, leading to a higher marine N inventory, increased export production, and perhaps widespread phosphorus limitation of the phytoplankton community. The increased efficiency of the biological pump would have contributed to the glacial drawdown in atmospheric CO2.
Description
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB2001, doi:10.1029/2006GB002762.
Collections
Suggested Citation
Global Biogeochemical Cycles 21 (2007): GB2001Related items
Showing items related by title, author, creator and subject.
-
Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean
Moutin, T.; Karl, David M.; Duhamel, Solange; Rimmelin, P.; Raimbault, P.; Van Mooy, Benjamin A. S.; Claustre, Hervé (Copernicus Publications on behalf of the European Geosciences Union, 2008-01-29)Due to the low atmospheric input of phosphate into the open ocean, it is one of the key nutrients that could ultimately control primary production and carbon export into the deep ocean. The observed trend over the last 20 ... -
Effects of watershed land use on nitrogen concentrations and δ15 Nitrogen in groundwater
Cole, Marci L.; Kroeger, Kevin D.; McClelland, James W.; Valiela, Ivan (2005-07-18)Eutrophication is a major agent of change affecting freshwater, estuarine, and marine systems. It is largely driven by transportation of nitrogen from natural and anthropogenic sources. Research is needed to quantify ... -
Microbial associations with macrobiota in coastal ecosystems : patterns and implications for nitrogen cycling
Moulton, Orissa M.; Altabet, Mark A.; Beman, J. Michael; Deegan, Linda A.; Lloret, Javier; Lyons, Meaghan K.; Nelson, James A.; Pfister, Catherine (John Wiley & Sons, 2016-05-02)In addition to their important effects on nitrogen (N) cycling via excretion and assimilation (by macrofauna and macroflora, respectively), many macrobiota also host or facilitate microbial taxa responsible for N ...