• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Marine Chemistry and Geochemistry (MC&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Marine Chemistry and Geochemistry (MC&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Modeling the global ocean iron cycle

    Thumbnail
    View/Open
    2003GB002061.pdf (599.6Kb)
    Date
    2004-01-07
    Author
    Parekh, Payal  Concept link
    Follows, Michael J.  Concept link
    Boyle, Edward A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/3390
    As published
    https://doi.org/10.1029/2003GB002061
    Keyword
     Modeling; Ocean iron cycle 
    Abstract
    We describe a model of the ocean transport and biogeochemical cycling of iron and the subsequent control on export production and macronutrient distributions. Ocean transport of phosphorus and iron are represented by a highly idealized six-box ocean model. Export production is parameterized simply; it is limited by light, phosphate, and iron availability in the surface ocean. We prescribe the regional variations in aeolian deposition of iron and examine three parameterizations of iron cycling in the deep ocean: (1) net scavenging onto particles, the simplest model; (2) scavenging and desorption of iron to and from particles, analogous to thorium; and (3) complexation. Provided that some unknown parameter values can be set appropriately, all three biogeochemical models are capable of reproducing the broad features of the iron distribution observed in the modern ocean and explicitly lead to regions of elevated surface phosphate, particularly in the Southern Ocean. We compare the sensitivity of Southern Ocean surface macronutrient concentration to increased aeolian dust supply for each parameterization. Both scavenging-based representations respond to increasing dust supply with a drawdown of surface phosphate in an almost linear relationship. The complexation parameterization, however, asymptotes toward a limited drawdown of phosphate under the assumption that ligand production does not respond to increased dust flux. In the scavenging based models, deep water iron concentrations and, therefore, upwelled iron continually increase with greater dust supply. In contrast, the availability of complexing ligand provides an upper limit for the deep water iron concentration in the latter model.
    Description
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB1002, doi:10.1029/2003GB002061.
    Collections
    • Marine Chemistry and Geochemistry (MC&G)
    Suggested Citation
    Global Biogeochemical Cycles 18 (2004): GB1002
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234) 

      Sherwood, Christopher R.; Aretxabaleta, Alfredo L.; Harris, Courtney K.; Rinehimer, J. Paul; Verney, Romaric; Ferré, Bénédicte (Copernicus Publications on behalf of the European Geosciences Union, 2018-05-14)
      We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6), as implemented in the Coupled Ocean–Atmosphere–Wave–Sediment ...
    • Thumbnail

      Recent advances in Arctic ocean studies employing models from the Arctic Ocean Model Intercomparison Project 

      Proshutinsky, Andrey; Aksenov, Yevgeny; Kinney, Jaclyn Clement; Gerdes, Rudiger; Golubeva, Elena; Holland, David; Holloway, Greg; Jahn, Alexandra; Johnson, Mark; Popova, Ekaterina E.; Steele, Michael; Watanabe, Eiji (Oceanography Society, 2011-09)
      Observational data show that the Arctic Ocean has significantly and rapidly changed over the last few decades, which is unprecedented in the observational record. Air and water temperatures have increased, sea ice volume ...
    • Thumbnail

      Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean : a modeling study 

      Arruda, R.; Calil, Paulo H. R.; Bianchi, A. A.; Doney, Scott C.; Gruber, Nicolas; Lima, Ivan D.; Turi, G. (Copernicus Publications on behalf of the European Geosciences Union, 2015-10-12)
      We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air-sea CO2 fluxes in the ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo