Show simple item record

dc.contributor.authorKrawczynski, Michael J.  Concept link
dc.contributor.authorBehn, Mark D.  Concept link
dc.contributor.authorDas, Sarah B.  Concept link
dc.contributor.authorJoughin, Ian  Concept link
dc.date.accessioned2010-05-04T17:51:13Z
dc.date.available2010-05-04T17:51:13Z
dc.date.issued2009-05-16
dc.identifier.citationGeophysical Research Letters 36 (2009): L10501en_US
dc.identifier.urihttps://hdl.handle.net/1912/3378
dc.descriptionAuthor Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L10501, doi:10.1029/2008GL036765.en_US
dc.description.abstractWater-filled cracks are an effective mechanism to drive hydro-fractures through thick ice sheets. Crack geometry is therefore critical in assessing whether a supraglacial lake contains a sufficient volume of water to keep a crack water-filled until it reaches the bed. In this study, we investigate fracture propagation using a linear elastic fracture mechanics model to calculate the dimensions of water-filled cracks beneath supraglacial lakes. We find that the cross-sectional area of water-filled cracks increases non-linearly with ice sheet thickness. Using these results, we place volumetric constraints on the amount of water necessary to drive cracks through ∼1 km of sub-freezing ice. For ice sheet regions under little tension, lakes larger than 0.25–0.80 km in diameter contain sufficient water to rapidly drive hydro-fractures through 1–1.5 km of subfreezing ice. This represents ∼98% of the meltwater volume held in supraglacial lakes in the central western margin of the Greenland Ice Sheet.en_US
dc.description.sponsorshipSupport for this research was provided by NSF and NASA (through ARC-0520077, ARC- 0531345, and ARC-520382) and by the Joint Initiative Awards Fund from the Andrew Mellon Foundation, and the WHOI Ocean and Climate Change Institute and Clark Arctic Research Initiative.en_US
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/x-tex
dc.language.isoen_USen_US
dc.publisherAmerican Geophysical Unionen_US
dc.relation.urihttps://doi.org/10.1029/2008GL036765
dc.subjectSupraglacial lakesen_US
dc.subjectGreenlanden_US
dc.subjectHydrofractureen_US
dc.titleConstraints on the lake volume required for hydro-fracture through ice sheetsen_US
dc.typeArticleen_US
dc.identifier.doi10.1029/2008GL036765


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record