Accelerated settling of particulate matter by ’marine snow’ aggregates

Thumbnail Image
Date
1985-12
Authors
Asper, Vernon L.
Linked Authors
Alternative Title
As Published
Date Created
Location
North Pacific
Panama Basin
Black Sea
DOI
10.1575/1912/3367
Related Materials
Replaces
Replaced By
Keywords
Marine sediments
Sediment transport
Knorr (Ship : 1970-) Cruise KN94
Columbus Iselin (Ship) Cruise CI83-13
Atlantis II (Ship : 1963-) Cruise AII112-23
Abstract
Samples from time-series sediment traps deployed in three distinct oceanographic settings (North Pacific, Panama Basin, and Black Sea) provide strong evidence for rapid settling of marine particles by aggregates. Particle water column residence times were determined by measuring the time lag between the interception of a flux event in a shallow trap and the interception of the same event in a deeper trap at the same site. Effective sinking speeds were determined by dividing the vertical offset of the traps (meters) by the interception lag time (days). At station Papa in the North Pacific, all particles settle at 175 m day-1, regardless of their composition, indicating that all types of material may be settling in common packages. Evidence from the other two sites (Panama Basin and Black Sea) shows that particle transport may be vertical, lateral, or a combination of directions, with much of the Black Sea flux signal being dominated by lateral input. In order to ascertain whether marine snow aggregates represent viable transport packages, surveys were conducted of the abundance of these aggregates at several stations in the eastern North Atlantic and Panama Basin using a photographic technique. Marine snow aggregates were found in concentrations ranging from ~1 mm3 liter-1 to more than 500 mm3 liter-1. In open ocean environments, abundances are higher near the surface (production) and decline with depth (decomposition). However, in areas near sources of deep input of resuspended material, concentrations reach mid-water maxima, reflecting lateral transport. A model is proposed to relate the observed aggregate abundances, time series sediment flux and inferred circulation. In this model, depthwise variations in sediment flux and aggregate abundance result from suspension from the sea floor and lateral transport of suspended aggregates which were produced or modified on the sea floor. Temporal changes in sediment flux result from variations in the input of fast-sinking material which falls from the surface, intercepts the suspended aggregates, and transports them to the sea floor. A new combination sediment trap and camera system was built and deployed in the Panama Basin with the intent of measuring the flux of marine snow aggregates. This device consists of a cylindrical tube which is open at the top and sealed at the bottom by a clear plate. Material lying on the bottom plate is illuminated by strobe lights mounted in the wall of the cylinder and photographed by a camera which is positioned below the bottom plate. Flux is determined as the number of aggregates arriving during the time interval between photographic frames (# area-1 time-1). Results show that essentially all material arrives in the form of aggregates with minor contributions of fecal pellets and solitary particles. Sinking speeds (m day-1), calculated by dividing the flux of aggregates (# m-2 day-1) by their abundance (# m-3), indicate that the larger (4-5mm) aggregates are flocculent and sink slowly (~1m day-1) while the smaller aggregates (1-2.5mm) are more compact and sink more quickly (~36m day-1). These large, slow-sinking aggregates may have been re-suspended from the sediment water interface at nearby basin margins.
Description
Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1985
Embargo Date
Citation
Asper, V. L. (1985). Accelerated settling of particulate matter by 'marine snow' aggregates [Doctoral thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution]. Woods Hole Open Access Server. https://doi.org/10.1575/1912/3367
Cruises
Cruise ID
Cruise DOI
Vessel Name