Rheologic controls on slab dynamics
Citable URI
https://hdl.handle.net/1912/3255As published
https://doi.org/10.1029/2007GC001597DOI
10.1029/2007GC001597Keyword
Subduction; Rheology; Mantle dynamics; Plate tectonics; Slab morphologyAbstract
Several models have been proposed to relate slab geometry to parameters such as plate velocity or plate age. However, studies on the observed relationships between slab geometry and a wide range of subduction parameters show that there is not a simple global relationship between slab geometry and any one of these other subduction parameters for all subduction zones. Numerical and laboratory models of subduction provide a method to explore the relative importance of different physical processes in determining subduction dynamics. Employing 2-D numerical models with a viscosity structure constrained by laboratory experiments for the deformation of olivine, we show that the observed range in slab dip and the observed trends between slab dip and convergence velocity, subducting plate age, and subduction duration can be reproduced without trench motion (i.e., slab roll-back) for locations away from slab edges. Successful models include a stiff slab that is 100–1000 times more viscous than previous estimates from models of plate bending, the geoid, and global plate motions. We find that slab dip in the upper mantle depends primarily on slab strength and plate boundary coupling, with a small dependence on subducting plate age. Once the slab sinks into the lower mantle the primary processes controlling slab evolution are (1) the ability of the stiff slab to transmit stresses up dip, (2) resistance to slab descent into the higher-viscosity lower mantle, and (3) subduction-induced flow in the mantle-wedge corner.
Description
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q08012, doi:10.1029/2007GC001597.
Collections
Suggested Citation
Geochemistry Geophysics Geosystems 8 (2007): Q08012Related items
Showing items related by title, author, creator and subject.
-
A constitutive model for layer development in shear zones near the brittle-ductile transition
Montesi, Laurent G. J. (American Geophysical Union, 2007-04-27)The microstructure of ductile shear zones differs from that of surrounding wall rocks. In particular, compositional layering is a hallmark of shear zones. As layered rocks are weaker than their isotropic protolith when ... -
Controls of shear zone rheology and tectonic loading on postseismic creep
Montesi, Laurent G. J. (American Geophysical Union, 2004-10-08)Postseismic deformation is well documented in geodetic data collected in the aftermath of large earthquakes. In the postseismic time interval, GPS is most sensitive to creep in the lower crust or upper mantle activated by ... -
Thermal-mechanical behavior of oceanic transform faults : implications for the spatial distribution of seismicity
Roland, Emily C.; Behn, Mark D.; Hirth, Greg (American Geophysical Union, 2010-07-01)To investigate the spatial distribution of earthquakes along oceanic transform faults, we utilize a 3-D finite element model to calculate the mantle flow field and temperature structure associated with a ridge-transform-ridge ...