• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Exact reconstruction of ocean bottom velocity profiles from monochromatic scattering data

    Thumbnail
    View/Open
    Merab_thesis.pdf (18.25Mb)
    Date
    1987-01
    Author
    Merab, Andre A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/3219
    DOI
    10.1575/1912/3219
    Keyword
     Underwater acoustics; Inverse scattering transform 
    Abstract
    This thesis presents the theoretical and computational underpinnings of a novel approach to the determination of the acoustic parameters of the ocean bottom using a monochromatic source. The problem is shown to be equivalent to that of the reconstruction of the potential in a Schrodinger equation from the knowledge of the plane-wave reflection coefficient as a function of vertical wavenumber, r(kz) for all real positive k z. First, the reflection coefficient is shown to decay asymptotically at least as fast as (1/kz2) for large kz and is therefore inteqrable. The Gelfand-Levitan inversion procedure is extended to include the case of basement velocity higher than the velocity of sound in water. The neglect of bound states is shown to be justified in both clayey silt and silty clay at the 220 Hz frequency of operation. Three methods for the numerical solution of the integral equation are investigated. The first one is an "Improved Born approximation" wherein the solution is given as a series expansion the first term of which is the Born approximation while the second term represents a substantial and yet easy to implement improvement over Born. The two other methods are based on a discretization of the Gelfand-Levitan integral equation, and both avoid a matrix inversion: one by employing a recursive procedure, and the other by coupling the Gelfand-Levitan equation with a partial differential equation. Bounds are obtained on errors in the solution due either to discretization or to data inaccuracy. These methods are tested on synthetic data obtained from known geoacoustic models of the ocean bottom. Results are found to be very accurate particularly at the top of the sediment layer with resolution of less than the wavelength of the acoustic source in the water. Several effects are investigated, such as sampling, attenuation, and noise. Also examined is the gradual restriction of the reflection coefficient to a finite range of vertical wave numbers and the consequent progressive deterioration of the reconstruction. The analysis shows how to reconstruct velocity profiles in the presence of density variation when the experiment is conducted at two frequencies. Our results provide a good understanding of the issues involved in conducting a monochromatic deep ocean bottom experiment and constitute a promising technique for processing the experimental data when it becomes available.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1987
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • WHOI Theses
    Suggested Citation
    Thesis: Merab, Andre A., "Exact reconstruction of ocean bottom velocity profiles from monochromatic scattering data", 1987-01, DOI:10.1575/1912/3219, https://hdl.handle.net/1912/3219
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Broadband and statistical characterization of echoes from random scatterers : application to acoustic scattering by marine organisms 

      Lee, Wu-Jung (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2013-02)
      The interpretation of echoes collected by active remote-sensing systems, such as sonar and radar, is often ambiguous due to the complexities in the scattering processes involving the scatterers, the environment, and the ...
    • Thumbnail

      Non-Rayleigh scattering by a randomly oriented elongated scatterer 

      Bhatia, Saurav (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2012-08)
      The echo statistics of a randomly rough, randomly oriented prolate spheroid that is randomly located in a beampattern are investigated from physics-based principles both analytically and by Monte Carlo methods. This is ...
    • Thumbnail

      Acoustic scattering from sand dollars (Dendraster excentricus) : modeling as high aspect ratio oblate objects and comparison to experiment 

      Dietzen, Gregory C. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2008-09)
      Benthic shells can contribute greatly to the scattering variability of the ocean bottom, particularly at low grazing angles. Among the effects of shell aggregates are increased scattering strength and potential subcritical ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo