• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Circulation and convection in the Irminger Sea

    Thumbnail
    View/Open
    Vaage_thesis.pdf (24.99Mb)
    Date
    2010-02
    Author
    Våge, Kjetil  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/3218
    Location
    Irminger Sea
    DOI
    10.1575/1912/3218
    Keyword
     Hydrography; Ocean circulation 
    Abstract
    Aspects of the circulation and convection in the Irminger Sea are investigated using a variety of in-situ, satellite, and atmospheric reanalysis products. Westerly Greenland tip jet events are intense, small-scale wind phenomena located east of Cape Farewell, and are important to circulation and convection in the Irminger Sea. A climatology of such events was used to investigate their evolution and mechanism of generation. The air parcels constituting the tip jet are shown to have a continental origin, and to exhibit a characteristic deflection and acceleration around southern Greenland. The events are almost invariably accompanied both by a notable coherence of the lower-level tip jet with an overlying upper-level jet stream, and by a surface cyclone located in the lee (east) of Greenland. It is argued that the tip jet arises from the interplay of the synopticscale flow evolution and the perturbing effects of Greenland’s topography upon the flow. The IrmingerGyre is a narrow, cyclonic recirculation confined to the southwest Irminger Sea. While the gyre’s existence has been previously documented, relatively little is known about its specific features or variability. The mean strength of the gyre’s circulation between 1991 and 2007 was 6.8 ± 1.8 Sv. It intensified at a rate of 4.3 Sv per decade over the observed period despite declining atmospheric forcing. Examination of the temporal evolution of the LSW layer thickness across the Irminger Basin suggests that local convection formed LSW during the early 1990s within the Irminger Gyre. In contrast, LSW appeared outside of the gyre in the eastern part of the Irminger Sea with a time lag of 2-3 years, consistent with transit from a remote source in the Labrador Sea. In the winter of 2007-08 deep convection returned to both the Labrador and Irminger seas following years of shallow overturning. The transition to a convective state took place abruptly, without going through a preconditioning phase, which is contrary to general expectations. Changes in the hemispheric air temperature, tracks of storms, flux of freshwater to the Labrador Sea, and distribution of pack ice all conspired to enhance the air-sea heat flux, resulting in the deep overturning.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2010
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Våge, Kjetil, "Circulation and convection in the Irminger Sea", 2010-02, DOI:10.1575/1912/3218, https://hdl.handle.net/1912/3218
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Oceanic fluxes of mass, heat, and freshwater : a global estimate and perspective 

      Macdonald, Alison M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1995-08)
      Data from fifteen globally distributed, modern, high resolution, hydrographic oceanic transects are combined in an inverse calculation using large scale box models. The models provide estimates of the global meridional ...
    • Thumbnail

      Instabilities of an eastern boundary current with and without large-scale flow influence 

      Wang, Jinbo (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2011-06)
      Eastern oceanic boundary currents are subject to hydrodynamic instability, generate small scale features that are visible in satellite images and may radiate westward into the interior, where they can be modified by the ...
    • Thumbnail

      Adaptive error estimation in linearized ocean general circulation models 

      Chechelnitsky, Michael Y. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1999-06)
      Data assimilation methods, such as the Kalman filter, are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. In this study we address the problem of estimating ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo