• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Biogeochemistry of dissolved free amino acids in marine sediments

    Thumbnail
    View/Open
    Henrichs_thesis.pdf (25.50Mb)
    Date
    1980-08
    Author
    Henrichs, Susan M.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/3215
    Location
    Pettaquamscutt River Estuary, RI
    Gulf of Maine
    Buzzards Bay, MA
    Bermuda Rise
    DOI
    10.1575/1912/3215
    Keyword
     Biogeochemistry; Marine sediments; Amino acids; Oceanus (Ship : 1975-) Cruise OC74; Knorr (Ship : 1970-) Cruise KN73; Knorr (Ship : 1970-) Cruise KN69 
    Abstract
    Dissolved free amino acids (DFAA) were measured in interstitial water samples squeezed from sediments collected in a variety of depositional environments. These sediments were further characterized by measurements of total organic carbon, total nitrogen, dissolved organic carbon, total hydrolyzable amino acids, and pore water-dissolved remineralization products. Surface sediments from the oxygen minimum zone of the Peru Upwelling Region, which consisted of a filamentous bacterial mat, were sampled at three locations. DFAA concentrations within the mat ranged from 5 to 220 μM, with the highest concentrations found in the upper 4 cm at two stations on the landward and seaward edges of the zone, and lower concentrations at a station in the middle of the oxygen minimum zone. Within cores, lower concentrations were found at depths below the mat; and below 30 cm depth concentrations were between 0.7 and 3 μM. Two short cores of offshore sediments had concentrations between 14 and 40 μM (1400 m depth) and between 3 and 8 μM (5200 m). Glutamic acid was the predominant amino acid in nearly all surface sediments samples, making up 30 to 70 mole %. In sediments below 15 cm depth, β-aminoglutaric acid was often more abundant than glutamic acid and other amino acids were virtually absent. Glutamic acid, both from several analyses performed during this work and from data available in the literature is a major DFAA of bacterial pools, and bacteria are a likely source for the high concentrations seen in interstitial water samples. DFAA may be extracted from living cells by the squeezing process, or may be excreted by the bacteria under natural conditions. β-Aminoglutaric acid is s non-protein amino acid isomer of glutamic acid which has not been previously reported as a natural product. However, this work has shown it to be a constituent of the free amino acid pools of some bacteria at about 5 mole %. Its much larger relative abundance in sediments could stem from organisms which biosynthesize greater amounts than those analyzed, or from relatively slow biodegradation. Buzzards Bay, Massachusetts surface sediments (17 m water depth) also contained high DFAA concentrations, near; 50 μM, which decreased gradually with depth to about 5 μM at 30 cm. Glutamic acid and β-aminoglutaric acid were the major components, with β-aminoglutaric acid becoming relatively more abundant with depth in core. Repeated sampling of this station was carried out, and both the concentration and composition of DFAA in replicate samples was very similar. Sediments from the Pettaquamscutt River Estuary, Rhode Island (an anoxic basin), had low DFAA concentrations ranging from 2 to 6 μM. Glutamic and β-aminoglutaric acids made up 30 to 50 % of the total. Three cores of Gulf of Maine basin sediments had DFAA concentrations and compositions which were similar to each other and to Buzzards Bay sediments, except that glycine was a major constituent of some of the samples. Its distribution was irregular over the less than 30 cm depth intervals sampled. Glycine is the major DFAA in the pools of many benthic invertebrates. Its presence in these cores is consistent with independent evidence that Gulf of Maine basin sediments are extensively bioturbated. Two cores of carbonate-rich sediments from the continental rise to the east of the Gulf of Maine and from the Bermuda Rise had surface sediment DFAA concentrations of 33 and 0.9 μM, respectively. Despite the large difference in concentration, compositions were very similar, with glycine and glutamic acid the major constituents. The very low concentrations in the Bermuda Rise sediments may be related to very low metabolizable organic carbon concentrations. Two nonprotein amino acids, γ-aminobutyric acid and β-alanine, were major constituents of the total hydrolyzable amino acids in the Bermuda Rise sediments. Biological processes, specifically microbial, appear to be responsible for the major features of DFAA concentration and composition in the sediments studied. The concentrations of DFAA measured could be of significance to the nutrition of benthic organisms via transepidermal uptake or to the formation of humic substances in sediments, if these levels are found outside cells . However, as a sink for DFAA in sediments, the latter two processes are slow relative to microbial uptake.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1980
    Collections
    • WHOI Theses
    • Marine Chemistry and Geochemistry (MC&G)
    Suggested Citation
    Thesis: Henrichs, Susan M., "Biogeochemistry of dissolved free amino acids in marine sediments", 1980-08, DOI:10.1575/1912/3215, https://hdl.handle.net/1912/3215
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Fatty acids and fatty acid esters of particulate matter collected in sediment traps in the Peru upwelling area R/V Knorr Cruise 73, February/March 1978 

      Wakeham, Stuart G.; Livramento, Joaquim B.; Farrington, John W. (Woods Hole Oceanographic Institution, 1983-09)
      Particulate matter samples were collected using free-drifting sediment traps in the Peru upwelling area in 1978 to assess the vertical flux and organic composition of lipids associated with particles sinking out of ...
    • Thumbnail

      Temporal and spatial variability in sedimentation in the Black Sea : cruise report R/V Knorr 134-8, Black Sea Leg 1, April 16-May 7, 1988 

      Honjo, Susumu; Hay, Bernward J.; Members of the Scientific Shipboard Party (Woods Hole Oceanographic Institution, 1988-10)
      This document represents the cruise report of the highly successful Leg 1 of the R/V Knorr cruise to the Black Sea (Cruise 134-8) as a joint Turkish-American Oceanographic Expedition (Izmir to Istanbul, April 16 to May ...
    • Thumbnail

      Amino acid compound specific isotope analyses of abyssal deposit feeders, gut contents, and surrounding surface sediments collected on R/V Atlantis cruise AT42-10 and R/V Western Flyer Pulse 72 in the eastern North Pacific in 2019 

      Drazen, Jeffrey C.; Popp, Brian N.; Romero, Sonia (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-06-03)
      Abyssal ecosystems depend on the quantity and quality of organic material reaching the deep-sea floor. During R/V Atlantis cruise (AT42-10) in May 2019 and R/V Western Flyer cruise (Pulse 72) in October 2019, samples from ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo