• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Horizontal and vertical structure of velocity, potential vorticity and energy in the Gulf Stream

    Thumbnail
    View/Open
    Hall_thesis.pdf (3.058Mb)
    Date
    1985-02
    Author
    Hall, Melinda M.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/3150
    Location
    Gulf Stream
    DOI
    10.1575/1912/3150
    Keyword
    Ocean currents
    Abstract
    From October, 1982 to October, 1983 a current meter mooring reaching from the bottom into the thermocline was deployed for the first time in the Gulf Stream at 68°W. The temperatures, pressures, and velocities at the uppermost instrument indicate the Gulf Stream moved back and forth across the mooring site, so that the entire Stream was sampled in time; hence the data may be used to examine horizontal as well as vertical structure of the Stream. The two key points to the success of the analysis are: 1)the well-defined relationship between temperature and cross-stream distance in the thermocline, enabling the use of the former as a horizontal coordinate; and 2)a daily-changing definition of Gulf Stream flow direction based on the shear between the thermocline and 2000 m depth. Time-series of daily-rotated velocities may be used to calculate empirical orthogonal functions for the long- and cross-stream vertical structures, which are decoupled and are respectively baroclinic and barotropic. Using the inferred horizontal coordinate one can estimate mass, momentum and kinetic energy fluxes for four individual events when the entire Stream swept by the mooring. The results agree well with historical data. Bryden's (1980) method has been used to calculate vertical velocities from the temperature equation; the resulting time-series of w are visually coherent throughout the water column and their vertical amplitude structure is reminiscent of that for a two-layer system. The rms vertical velocities are large (0(.05 cm/s)), and these as well as other estimates have been used to explore the validity of the quasi-geostrophic approximation at the mooring site. The Rossby number for the thermocline flow is about 0.3, and for the deep flow is ≤ 0.1. The entire data set may also be used to construct a horizontal and vertical profile of velocity in the Gulf Stream, from which a cross-section of the mean potential vorticity can be produced. The latter shares many common feature with cross-sections from past work for a nearby site, as well as analogous data from a three-layer numerical model, thus suggesting that they are robust features of Gulf Stream-like currents. These features are, in particular, a strong jump from low to high values crossing the Stream from south to north; and a change in the sign of the potential vorticity gradient on isothermal surfaces for T > 12°C. To complement the analysis of the observational data, a set of diagnostic calculations has been performed on an eddy-resolving qeneral circulation model, to provide a complete picture of the kinetic energy budgets of the free jet and its environs. It is found that the downstream convergence of kinetic energy in the decelerating jet is balanced primarily by an ageostrophic flow against the pressure gradient, which in turn implies some conversion of kinetic to available potential energy in the region. Energetic analysis of the observations as well as the numerical data suggests barotropic and baroclinic instabilities may be equally important to the kinetic energy budgets in the Stream. Because there is but one mooring, the dynamics governing the fluctuations remain elusive. Nonetheless, a kinematic framework is proposed, which is consistent with the data and accounts for a variety of unusual features that arise in the original analysis (for example, distinct asymmetries in the four Gulf Stream crossings, and the rather large vertical velocities). It is sugqested that the data we are now capable of collecting is proffering fundamentally new attributes of the Gulf Stream, which must be included and accounted for in future theoretical work.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1985
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Hall, Melinda M., "Horizontal and vertical structure of velocity, potential vorticity and energy in the Gulf Stream", 1985-02, DOI:10.1575/1912/3150, https://hdl.handle.net/1912/3150
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      A model of the temporal and spatial distribution of carbon monoxide in the mixed layer 

      Kettle, A. James (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1994-06)
      A field experiment demonstrated the presence of a diurnal cycle in the concentration of carbon monoxide ([CO]) in the upper ocean at the BATS site. A series of laboratory experiments and numerical simulations were carried ...
    • Thumbnail

      Circulation in upper layers of southern North Atlantic deduced with use of isentropic analysis 

      Montgomery, Raymond B. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1938-08)
      Except for the presence in most localities of a shallow homogeneous surface layer and of a relatively homogeneous and deeper bottom layer, the oceans of the temperate and tropical regions are stratified and vertically ...
    • Thumbnail

      Coral reefs in the Anthropocene Ocean: novel insights from skeletal proxies of climate change, impacts, and resilience 

      Mollica, Nathaniel R. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2021-02)
      Anthropogenic emissions of greenhouse gases are driving rapid changes in ocean conditions. Shallow-water coral reefs are experiencing the brunt of these changes, including intensifying marine heatwaves (MHWs) and rapid ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo