Terrestrial C sequestration at elevated CO2 and temperature : the role of dissolved organic N loss

View/ Open
Date
2004-06-07Author
Rastetter, Edward B.
Concept link
Perakis, Steven S.
Concept link
Shaver, Gaius R.
Concept link
Agren, Goran I.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/314As published
https://doi.org/10.1890/03-5303Keyword
Carbon–nitrogen interactions; Carbon sequestration; Dissolved inorganic nitrogen; Dissolved organic nitrogen; Ecosystem models; Global climate change; Carbon–nitrogen interactions; Terrestrial ecosystemsAbstract
We used a simple model of carbon–nitrogen (C–N) interactions in terrestrial ecosystems to examine the responses to elevated CO2 and to elevated CO2 plus warming in ecosystems that had the same total nitrogen loss but that differed in the ratio of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) loss. We postulate that DIN losses can be curtailed by higher N demand in response to elevated CO2, but that DON losses cannot. We also examined simulations in which DON losses were held constant, were proportional to the amount of soil organic matter, were proportional to the soil C:N ratio, or were proportional to the rate of decomposition. We found that the mode of N loss made little difference to the short-term (<60 years) rate of carbon sequestration by the ecosystem, but high DON losses resulted in much lower carbon sequestration in the long term than did low DON losses. In the short term, C sequestration was fueled by an internal redistribution of N from soils to vegetation and by increases in the C:N ratio of soils and vegetation. This sequestration was about three times larger with elevated CO2 and warming than with elevated CO2 alone. After year 60, C sequestration was fueled by a net accumulation of N in the ecosystem, and the rate of sequestration was about the same with elevated CO2 and warming as with elevated CO2 alone. With high DON losses, the ecosystem either sequestered C slowly after year 60 (when DON losses were constant or proportional to soil organic matter) or lost C (when DON losses were proportional to the soil C:N ratio or to decomposition). We conclude that changes in long-term C sequestration depend not only on the magnitude of N losses, but also on the form of those losses.
Description
Author's draft titled: Carbon sequestration in terrestrial ecosystems under elevated CO2 and temperature : role of dissolved organic versus inorganic nitrogen loss Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 15 (2005): 71–86, doi:10.1890/03-5303
Collections
Suggested Citation
Preprint: Rastetter, Edward B., Perakis, Steven S., Shaver, Gaius R., Agren, Goran I., "Terrestrial C sequestration at elevated CO2 and temperature : the role of dissolved organic N loss", 2004-06-07, https://doi.org/10.1890/03-5303, https://hdl.handle.net/1912/314Related items
Showing items related by title, author, creator and subject.
-
Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems
Euskirchen, Eugenie; McGuire, A. David; Kicklighter, David W.; Zhuang, Qianlai; Clein, Joy S.; Dargaville, R. J.; Dye, D. G.; Kimball, John S.; McDonald, Kyle C.; Melillo, Jerry M.; Romanovsky, Vladimir; Smith, N. V. (2005-10-07)In terrestrial high-latitude regions, observations indicate recent changes in snow cover, permafrost, and soil freeze-thaw transitions due to climate change. These modifications may result in temporal shifts in the growing ... -
Particulate and dissolved organic carbon and nitrogen data from multiple cruises on R/V Wecoma, R/V Atlantis, and R/V New Horizon in the Northeast Pacific from 1997-2004 (GLOBEC NEP)
Wheeler, Patricia (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-02-01)This dataset contains particulate and dissolved organic carbon and nitrogen data from the GLOBEC Northeast Pacific (NEP) Long-Term Observation Program (LTOP) cruises from 1997 to 2004. The nutrient and extracted chlorophyll ... -
Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem
Nelson, Craig E.; Alldredge, Alice L.; McCliment, Elizabeth A.; Amaral-Zettler, Linda A.; Carlson, Craig A. (2011-01-11)Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient oceanic waters, where microbially-dominated food webs are supported largely by bacterioplankton recycling of dissolved compounds. Despite ...