On the electromagnetic fields produced by marine frequency domain controlled sources
Citable URI
https://hdl.handle.net/1912/3080As published
https://doi.org/10.1111/j.1365-246X.2009.04367.xDOI
10.1111/j.1365-246X.2009.04367.xAbstract
In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. Although it must be recognized that the quantitative interpretation of marine CSEM data over petroleum-bearing formations will typically require 2-D surveys and 2-D or 3-D modelling, the use of the 1-D approximation is useful under some circumstances and provides considerable insight into the physics of marine CSEM. It is the purpose of this paper to thoroughly explore the 1-D solutions for all four fundamental source types—vertical and horizontal, electric and magnetic dipole (VED, HED, VMD and HMD)—using a set of canonical reservoir models that encompass brine to weak to strong hydrocarbon types. The paper introduces the formalism to solve the Maxwell equations for a 1-D structure in terms of independent and unique toroidal and poloidal magnetic modes that circumscribe the salient diffusion physics. Green's functions for the two modes from which solutions for arbitrary source current distributions can be constructed are derived and used to obtain the electromagnetic (EM) fields produced by finite VED, HED, VMD and HMD sources overlying an arbitrary 1-D electrical structure. Field behaviour is analysed using the Poynting vector that represents the time-averaged flow of energy through the structure and a polarization ellipse decomposition of the triaxial seafloor EM field that is a complete field description. The behaviour of the two EM modes using unimodal VED and VMD sources is presented. The paper closes by extending these results to the bimodal HED and HMD sources.
Description
Author Posting. © The Author, 2009. This article is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 179 (2009): 1429-1457, doi:10.1111/j.1365-246X.2009.04367.x.
Collections
Suggested Citation
Geophysical Journal International 179 (2009): 1429-1457Related items
Showing items related by title, author, creator and subject.
-
A performance update of the InterOcean S4 electromagnetic current meter
Clay, Peter R.; Longworth, Steven P. (Woods Hole Oceanographic Institution, 1986-10)This report reviews the working principles of the InterOcean S4 electromagnetic current meter and outlines the practical difficulties and engineering solutions to convert these basic principles into a working ... -
Electromagnetic flow sensors
Lawson, Kenneth; Kanwisher, John W. (Woods Hole Oceanographic Institution, 1974-03)Flow sensors based on the principle of electromagnetic induction were investigated as alternatives to commonly used mechanical devices utilizing rotors and propellers. Prototype sensors were constructed showing ... -
Evaluation of electromagnetic source for ocean climate acoustic thermometry at Lake Seneca
Slavinsky, Mark; Bogolubov, Boris; Alelekov, Igor; Pigalov, Konstantin; Spiesberger, John L.; Boutin, Paul R. (Woods Hole Oceanographic Institution, 1993-02)A compact electromagnetic monopole source, requiring pressure equalization, was evaluated at the Naval Underwater Systems Center at Lake Seneca during July 1992 by scientists from the Institute of Applied Physics of the ...