Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle
Citable URI
https://hdl.handle.net/1912/3040DOI
10.1575/1912/3040Abstract
Improving the performance of modular, low-cost autonomous underwater vehicles (AUVs) in such
applications as long-range oceanographic survey, autonomous docking, and shallow-water mine countermeasures
requires improving the vehicles' maneuvering precision and battery life. These goals
can be achieved through the improvement of the vehicle control system. A vehicle dynamics model
based on a combination of theory and empirical data would provide an efficient platform for vehicle
control system development, and an alternative to the typical trial-and-error method of vehicle
control system field tuning. As there exists no standard procedure for vehicle modeling in industry,
the simulation of each vehicle system represents a new challenge.
Developed by von Alt and associates at the Woods Hole Oceanographic Institute, the REMUS
AUV is a small, low-cost platform serving in a range of oceanographic applications. This thesis
describes the development and verification of a six degree of freedom, non-linear simulation model
for the REMUS vehicle, the first such model for this platform. In this model, the external forces
and moments resulting from hydrostatics, hydrodynamic lift and drag, added mass, and the control
inputs of the vehicle propeller and fins are all defined in terms of vehicle coefficients. This thesis
describes the derivation of these coefficients in detail. The equations determining the coefficients,
as well as those describing the vehicle rigid-body dynamics, are left in non-linear form. to better
simulate the inherently non-linear behavior of the vehicle. Simulation of the vehicle motion is
achieved through numeric integration of the equations of motion. The simulator output is then
checked against vehicle dynamics data collected in experiments performed at sea. The simulator is
shown to accurately model the motion of the vehicle.
Description
Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2001
Suggested Citation
Thesis: Prestero, Timothy, "Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle", 2001-09, DOI:10.1575/1912/3040, https://hdl.handle.net/1912/3040Related items
Showing items related by title, author, creator and subject.
-
Single Transponder Range Only Navigation Geometry (STRONG) applied to REMUS autonomous under water vehicles
Hartsfield, J. Carl (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2005-08)A detailed study was conducted to prove the concept of an iterative approach to single transponder navigation for REMUS Autonomous Underwater Vehicles (AUVs). Although the concept of navigation with one acoustic beacon ... -
Large-area visually augmented navigation for autonomous underwater vehicles
Eustice, Ryan M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2005-06)This thesis describes a vision-based, large-area, simultaneous localization and mapping (SLAM) algorithm that respects the low-overlap imagery constraints typical of autonomous underwater vehicles (AUVs) while exploiting ... -
Subsurface observations of white shark predatory behaviour using an autonomous underwater vehicle
Skomal, Gregory B.; Hoyos-Padilla, E. Mauricio; Kukulya, Amy L.; Stokey, Roger P. (2015-09)Investigations of animal habitat use and behaviour are important for understanding the ecology of animals and are vital for making informed conservation decisions. Most of what is known about shark behaviour comes from ...