Adjustment of forest ecosystem root respiration as temperature warms
Date
2008-06Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/3031As published
https://doi.org/10.1111/j.1744-7909.2008.00750.xAbstract
Adjustment of ecosystem root respiration to warmer climatic conditions can alter the autotrophic
portion of soil respiration and influence the amount of carbon available for biomass production.
We examined 44 published values of annual forest root respiration and found an increase in
ecosystem root respiration with increasing mean annual temperature (MAT), but the rate of this
cross-ecosystem increase (Q10 = 1.6) is less than published values for short-term responses of
root respiration to temperature within ecosystems (Q10 = 2 to 3). When specific root respiration
rates and root biomass values were examined, there was a clear trend for decreasing root
metabolic capacity (respiration rate at a standard temperature) with increasing MAT. There also
were tradeoffs between root metabolic capacity and root system biomass, such that there were no
instances of high growing season respiration rates and high root biomass occurring together. We
also examined specific root respiration rates at three soil warming experiments at Harvard Forest,
USA, and found decreases in metabolic capacity for roots from the heated plots. This decline
could be due to either physiological acclimation or to the effects of co-occurring drier soils on
the measurement date. Regardless of the cause, these findings clearly suggest that modeling
efforts that allow root respiration to increase exponentially with temperature, with Q10 values of
2 or more, may over-predict root contributions to ecosystem CO2 efflux for future climates and
underestimate the amount of C available for other uses, including NPP.
Description
Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Journal of Integrative Plant Biology 50 (2008): 1467-1483, doi:10.1111/j.1744-7909.2008.00750.x.
Collections
Suggested Citation
Preprint: Burton, Andrew J., Melillo, Jerry M., Frey, Serita D., "Adjustment of forest ecosystem root respiration as temperature warms", 2008-06, https://doi.org/10.1111/j.1744-7909.2008.00750.x, https://hdl.handle.net/1912/3031Related items
Showing items related by title, author, creator and subject.
-
Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration
Liang, Liyin L.; Arcus, Vickery; Heskel, Mary; O'Sullivan, Odhran S.; Weerasinghe, Lasantha K.; Creek, Danielle; Egerton, John J. G.; Tjoelker, Mark; Atkin, Owen K.; Schipper, Louis A. (2017-10)Temperature is a crucial factor in determining the rates of ecosystem processes, e.g. leaf respiration (R) − the flux of plant respired CO2 from leaves to the atmosphere. Generally, R increases exponentially with temperature ... -
Thermal adaptation of soil microbial respiration to elevated temperature
Bradford, Mark A.; Davies, Christian A.; Frey, Serita D.; Maddox, Thomas R.; Melillo, Jerry M.; Mohan, Jacqueline E.; Reynolds, James F.; Treseder, Kathleen K.; Wallenstein, Matthew D. (2008-07-22)In the short-term heterotrophic soil respiration is strongly and positively related to temperature. In the long-term its response to temperature is uncertain. One reason for this is because in field experiments increases ... -
Eddy-driven pulses of respiration in the Sargasso Sea
Mourino-Carballido, Beatriz (2009-02)An analysis of nine years of data from the NW subtropical Atlantic reveals that variability in heterotrophic processes associated with (sub)mesoscale features has a major impact on the balance between photosynthesis and ...