Impoundment increases methane emissions in Phragmites‐invaded coastal wetlands
Date
2022-05-26Author
Sanders-DeMott, Rebecca
Concept link
Eagle, Meagan
Concept link
Kroeger, Kevin D.
Concept link
Wang, Faming
Concept link
Brooks, Thomas W.
Concept link
O'Keefe Suttles, Jennifer A.
Concept link
Nick, Sydney K.
Concept link
Mann, Adrian G.
Concept link
Tang, Jianwu
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/29304As published
https://doi.org/10.1111/gcb.16217DOI
10.1111/gcb.16217Keyword
Blue carbon; Coastal wetland; Dike; Eddy covariance; Impoundment; Methane; Net ecosystem exchange; Phragmites; Restoration; Static chambersAbstract
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted tidal exchange in vast areas of coastal wetlands. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls and scaling of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here, we (1) examine how carbon fluxes vary across a salinity gradient (4–25 psu) in impounded and natural, tidally unrestricted Phragmites wetlands using static chambers and (2) probe drivers of carbon fluxes within an impounded coastal wetland using eddy covariance at the Herring River in Wellfleet, MA, United States. Freshening across the salinity gradient led to a 50-fold increase in CH4 emissions, but effects on carbon dioxide (CO2) were less pronounced with uptake generally enhanced in the fresher, impounded sites. The impounded wetland experienced little variation in water-table depth or salinity during the growing season and was a strong CO2 sink of −352 g CO2-C m−2 year−1 offset by CH4 emission of 11.4 g CH4-C m−2 year−1. Growing season CH4 flux was driven primarily by temperature. Methane flux exhibited a diurnal cycle with a night-time minimum that was not reflected in opaque chamber measurements. Therefore, we suggest accounting for the diurnal cycle of CH4 in Phragmites, for example by applying a scaling factor developed here of ~0.6 to mid-day chamber measurements. Taken together, these results suggest that although freshened, impounded wetlands can be strong carbon sinks, enhanced CH4 emission with freshening reduces net radiative balance. Restoration of tidal flow to impounded ecosystems could limit CH4 production and enhance their climate regulating benefits.
Description
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sanders‐DeMott, R., Eagle, M., Kroeger, K., Wang, F., Brooks, T., Suttles, J., Nick, S., Mann, A., & Tang, J. Impoundment increases methane emissions in Phragmites‐invaded coastal wetlands. Global Change Biology, 28(15), (2022): 4539– 4557. https://doi.org/10.1111/gcb.16217.
Suggested Citation
Sanders‐DeMott, R., Eagle, M., Kroeger, K., Wang, F., Brooks, T., Suttles, J., Nick, S., Mann, A., & Tang, J. (2022). Impoundment increases methane emissions in Phragmites‐invaded coastal wetlands. Global Change Biology, 28(15), 4539– 4557.The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 4.0 International
Related items
Showing items related by title, author, creator and subject.
-
Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004
Zhuang, Qianlai; Zhu, Xudong; He, Yujie; Prigent, Catherine; Melillo, Jerry M.; McGuire, A. David; Prinn, Ronald G.; Kicklighter, David W. (IOP Science, 2015-09-10)Estimates of the seasonal and interannual exchanges of carbon dioxide (CO2) and methane (CH4) between land ecosystems north of 45°N and the atmosphere are poorly constrained, in part, because of uncertainty in the temporal ... -
Restoring tides to reduce methane emissions in impounded wetlands : a new and potent Blue Carbon climate change intervention
Kroeger, Kevin D.; Crooks, Stephen; Moseman-Valtierra, Serena M.; Tang, Jianwu (Nature Publishing Group, 2017-09-20)Coastal wetlands are sites of rapid carbon (C) sequestration and contain large soil C stocks. Thus, there is increasing interest in those ecosystems as sites for anthropogenic greenhouse gas emission offset projects ... -
Enhanced carbon uptake and reduced methane emissions in a newly restored wetland
Yang, Hualei; Tang, Jianwu; Zhang, Chunsong; Dai, Yuhang; Zhou, Cheng; Xu, Ping; Perry, Danielle C.; Chen, Xuechu (American Geophysical Union, 2020-01-04)Wetlands play an important role in reducing global warming potential in response to global climate change. Unfortunately, due to the effects of human disturbance and natural erosion, wetlands are facing global extinction. ...