Show simple item record

dc.contributor.authorZanette, Juliano  Concept link
dc.contributor.authorJenny, Matthew J.  Concept link
dc.contributor.authorGoldstone, Jared V.  Concept link
dc.contributor.authorWoodin, Bruce R.  Concept link
dc.contributor.authorWatka, Lauren A.  Concept link
dc.contributor.authorBainy, Afonso C. D.  Concept link
dc.contributor.authorStegeman, John J.  Concept link
dc.date.accessioned2009-08-10T16:16:52Z
dc.date.available2009-08-10T16:16:52Z
dc.date.issued2009-04-30
dc.identifier.urihttps://hdl.handle.net/1912/2909
dc.descriptionAuthor Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Aquatic Toxicology 93 (2009): 234-243, doi:10.1016/j.aquatox.2009.05.008.en
dc.description.abstractKnowledge of the complement of cytochrome P450 (CYP) genes is essential to understanding detoxification and bioactivation mechanisms for organic contaminants.We cloned three new CYP1 genes, CYP1B1, CYP1C2 and CYP1D1, from the killifish Fundulus heteroclitus, an important model in environmental toxicology. Expression of the new CYP1s along with previously known CYP1A and CYP1C1 was measured by qPCR in eight different organs. Organ distribution was similar for the two CYP1Cs, but otherwise patterns and extent of expression differed among the genes. The AHR agonist 3,3_,4,4_,5-pentachlorobiphenyl (PCB126) (31 pmol/g fish) induced expression of CYP1A and CYP1B1 in all organs examined, while CYP1C1 was induced in all organs except testis. The largest changes in response to PCB126 were induction of CYP1A in testis (~700-fold) and induction of CYP1C1 in liver (~500-fold). CYP1B1 in liver and gut, CYP1A in brain and CYP1C1 in gill also were induced strongly by PCB126 (>100-fold). CYP1C1 expression levels were higher than CYP1C2 in almost all tissues and CYP1C2 was much less responsive to PCB126. In contrast to the other genes, CYP1D1 was not induced by PCB126 in any of the organs. The organ-specific response of CYP1s to PCB126 implies differential involvement in effects of halogenated aromatic hydrocarbons in different organs. The suite of inducible CYP1s could enhance the use of F. heteroclitus in assessing aquatic contamination by AHR agonists. Determining basal and induced levels of protein and the substrate specificity for all five CYP1s will be necessary to better understand their roles in chemical effects and physiology.en
dc.description.sponsorshipThis study was supported in part by NIH grants JJS (the Superfund Basic Research Program 5P42ES007381 and R01ES015912) and MJJ (K99ES017044-01).en
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen
dc.relation.urihttps://doi.org/10.1016/j.aquatox.2009.05.008
dc.subjectP450en
dc.subjectCYP1en
dc.subjectFundulus heteroclitusen
dc.subjectFishen
dc.subjectPCBen
dc.subjectAHR agonisten
dc.subjectPollutionen
dc.titleNew cytochrome P450 1B1, 1C2 and 1D1 genes in the killifish Fundulus heteroclitus : Basal expression and response of five killifish CYP1s to the AHR agonist PCB126en
dc.typePreprinten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record