Connectivity and resilience of coral reef metapopulations in marine protected areas : matching empirical efforts to predictive needs

View/ Open
Date
2009-02-11Author
Botsford, L. W.
Concept link
White, J. Wilson
Concept link
Coffroth, M.- A.
Concept link
Paris, Claire B.
Concept link
Planes, Serge
Concept link
Shearer, T. L.
Concept link
Thorrold, Simon R.
Concept link
Jones, Geoffrey P.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/2844As published
https://doi.org/10.1007/s00338-009-0466-zDOI
10.1007/s00338-009-0466-zAbstract
Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.
Description
© 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Coral Reefs 28 (2009): 327-337, doi:10.1007/s00338-009-0466-z.
Collections
Suggested Citation
Coral Reefs 28 (2009): 327-337The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 4.0 International
Related items
Showing items related by title, author, creator and subject.
-
Estimating connectivity in marine populations : an empirical evaluation of assignment tests and parentage analysis under different gene flow scenarios
Saenz-Agudelo, Pablo; Jones, Geoffrey P.; Thorrold, Simon R.; Planes, Serge (2008-11-21)The application of spatially explicit models of population dynamics to fisheries management and the design marine reserves network systems has been limited due to a lack of empirical estimates of larval dispersal. Here we ... -
Connectivity dominates larval replenishment in a coastal reef fish metapopulation
Saenz-Agudelo, Pablo; Jones, Geoffrey P.; Thorrold, Simon R.; Planes, Serge (2011-01-25)Direct estimates of larval retention and connectivity are essential to understand the structure and dynamics of marine metapopulations, and optimize the size and spacing of reserves within networks of marine protected ... -
Incorporating information on bottlenose dolphin distribution into marine protected area design
Silva, Monica A.; Prieto, Rui; Magalhaes, Sara; Seabra, Maria I.; Machete, Miguel; Hammond, Philip S. (2011-10-12)The steady growth of the whale-watching activities in the Azores and its concentration in a small area that partly overlaps the home range of a resident group of bottlenose dolphins (Tursiops truncatus) was one of the ...