Show simple item record

dc.contributor.authorRosenheim, Brad E.
dc.contributor.authorThorrold, Simon R.
dc.contributor.authorRoberts, Mark L.
dc.date.accessioned2009-05-20T12:47:48Z
dc.date.available2009-05-20T12:47:48Z
dc.date.issued2008-08-29
dc.identifier.urihttp://hdl.handle.net/1912/2838
dc.descriptionAuthor Posting. © John Wiley & Sons, 2008. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Rapid Communications in Mass Spectrometry 22 (2008): 3443-3449, doi:10.1002/rcm.3745.en
dc.description.abstractDetermination of 14C in aragonite (CaCO3) decomposed thermally to CO2 using an yttrium‐aluminum‐garnet doped neodymium laser is reported. Laser decomposition accelerator mass spectrometer (LD‐AMS) measurements reproduce AMS determinations of 14C from conventional reaction of aragonite with concentrated phosphoric acid. The lack of significant differences between these sets of measurements indicate that LD‐AMS radiocarbon dating can overcome the significant fractionation that has been observed during stable isotope (C and O) laser decomposition analysis of different carbonate minerals. The laser regularly converted nearly 30% of material removed to CO2 despite being optimized for ablation, where laser energy breaks material apart rather than chemically altering it. These results illustrate promise for using laser decomposition on the front‐end of AMS systems that directly measure CO2 gas. The feasibility of such measurements depends on 1. the improvement of material removal and/or CO2 generation efficiency of the laser decomposition system and 2. the ionization efficiency of AMS systems measuring continuously flowing CO2.en
dc.description.sponsorshipThis work was funded on a competitive basis by the Cecil H. and Ida M. Green Technology Innovation Award of Woods Hole Oceanographic Institution.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen
dc.relation.urihttp://dx.doi.org/10.1002/rcm.3745
dc.titleAccelerator mass spectrometry 14C determination in CO2 produced from laser decomposition of aragoniteen
dc.typePreprinten


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record