• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Connections between ocean bottom topography and Earth’s climate

    Thumbnail
    View/Open
    17_1_Jayne_et_al.pdf (575.7Kb)
    Date
    2004-03
    Author
    Jayne, Steven R.  Concept link
    St. Laurent, Louis C.  Concept link
    Gille, Sarah T.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/2801
    As published
    https://doi.org/10.5670/oceanog.2004.68
    DOI
    10.5670/oceanog.2004.68
    Abstract
    The seafloor is one of the critical controls on the ocean’s general circulation. Its influence comes through a variety of mechanisms including the contribution of mixing in the ocean’s interior through the generation of internal waves created by currents flowing over rough topography. The influence of topographic roughness on the ocean’s general circulation occurs through a series of connected processes. First, internal waves are generated by currents and tides flowing over topographic features in the presence of stratification. Some portion of these waves is sufficiently nonlinear that they immediately break creating locally enhanced vertical mixing. The majority of the internal waves radiate away from the source regions, and likely contribute to the background mixing observed in the ocean interior. The enhancement of vertical mixing over regions of rough topography has important implications for the abyssal stratification and circulation. These in turn have implications for the storage and transport of energy in the climate system, and ultimately the response of the climate system to natural and anthropogenic forcing. Finally, mixing of the stratified ocean leads to changes in sea level; these changes need to be considered when predicting future sea level.
    Description
    Author Posting. © Oceanography Society, 2004. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 17, 1 (2004): 65-74.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Oceanography 17, 1 (2004): 65-74
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo