Stacked magma lenses beneath mid-ocean ridges: insights from new seismic observations and synthesis with prior geophysical and geologic findings
Date
2021-03-24Author
Carbotte, Suzanne M.
Concept link
Marjanovic, Milena
Concept link
Arnulf, Adrien F.
Concept link
Nedimovic, Mladen R.
Concept link
Canales, J. Pablo
Concept link
Arnoux, Gillean M.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/27687As published
https://doi.org/10.1029/2020JB021434DOI
10.1029/2020JB021434Keyword
Juan de Fuca Ridge; magmatic system; mid-ocean ridge; mush; seismic imaging; stacked magma sillsAbstract
Recent multi-channel seismic studies of fast spreading and hot-spot influenced mid-ocean ridges reveal magma bodies located beneath the mid-crustal Axial Magma Lens (AML), embedded within the underlying crustal mush zone. We here present new seismic images from the Juan de Fuca Ridge that show reflections interpreted to be from vertically stacked magma lenses in a number of locations beneath this intermediate-spreading ridge. The brightest reflections are beneath Northern Symmetric segment, from ∼46°42′-52′N and Split Seamount, where a small magma body at local Moho depths is also detected, inferred to be a source reservoir for the stacked magma lenses in the crust above. The imaged magma bodies are sub-horizontal, extend continuously for along-axis lengths of ∼1–8 km, with the shallowest located at depths of ∼100–1,200 m below the AML, and are similar to sub-AML bodies found at the East Pacific Rise. At both ridges, stacked sill-like lenses are detected beneath only a small fraction of the ridge length examined and are inferred to mark local sites of higher melt flux and active replenishment from depth. The imaged magma lenses are focused in the upper part of the lower crust, which coincides with the most melt rich part of the crystal mush zone detected in other geophysical studies and where sub-vertical fabrics are observed in geologic exposures of oceanic crust. We infer that the multi-level magma accumulations are ephemeral and may result from porous flow and mush compaction, and that they can be tapped and drained during dike intrusion and eruption events.
Description
Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(4), (2021): e2020JB021434, https://doi.org/10.1029/2020JB021434.
Collections
Suggested Citation
Carbotte, S. M., Marjanovic, M., Arnulf, A. F., Nedimovic, M. R., Canales, J. P., & Arnoux, G. M. (2021). Stacked magma lenses beneath mid-ocean ridges: insights from new seismic observations and synthesis with prior geophysical and geologic findings. Journal of Geophysical Research: Solid Earth, 126(4), e2020JB021434.Related items
Showing items related by title, author, creator and subject.
-
Constructing the crust along the Galapagos Spreading Center 91.3°–95.5°W : correlation of seismic layer 2A with axial magma lens and topographic characteristics
Blacic, Tanya M.; Ito, Garrett T.; Canales, J. Pablo; Detrick, Robert S.; Sinton, John M. (American Geophysical Union, 2004-10-21)Multichannel seismic reflection data are used to infer crustal accretion processes along the intermediate spreading Galapagos Spreading Center. East of 92.5°W, we image a magma lens beneath the ridge axis that is relatively ... -
Effects of variable magma supply on mid-ocean ridge eruptions : constraints from mapped lava flow fields along the Galápagos Spreading Center
Colman, Alice; Sinton, John M.; White, Scott M.; McClinton, J. Timothy; Bowles, Julie A.; Rubin, Kenneth H.; Behn, Mark D.; Cushman, Buffy; Eason, Deborah E.; Gregg, Tracy K. P.; Gronvold, Karl; Hidalgo, Silvana; Howell, Julia; Neill, Owen; Russo, Chris (American Geophysical Union, 2012-08-25)Mapping and sampling of 18 eruptive units in two study areas along the Galápagos Spreading Center (GSC) provide insight into how magma supply affects mid-ocean ridge (MOR) volcanic eruptions. The two study areas have similar ... -
Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46′N–9°56′N : implications for ridge crest plumbing and decadal changes in magma chamber compositions
Goss, Adam R.; Perfit, Michael R.; Ridley, W. Ian; Rubin, Kenneth H.; Kamenov, George D.; Soule, Samuel A.; Fundis, A.; Fornari, Daniel J. (American Geophysical Union, 2010-05-12)Detailed mapping, sampling, and geochemical analyses of lava flows erupted from an ∼18 km long section of the northern East Pacific Rise (EPR) from 9°46′N to 9°56′N during 2005–2006 provide unique data pertaining to the ...