• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Biomimetic oscillating foil propulsion to enhance underwater vehicle agility and maneuverability

    Thumbnail
    View/Open
    Licht_Thesis (18.93Mb)
    Date
    2008-06
    Author
    Licht, Stephen Carl  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/2763
    DOI
    10.1575/1912/2763
    Keyword
     Vehicles, remotely piloted; Ocean engineering 
    Abstract
    Inspired by the swimming abilities of marine animals, this thesis presents "Finnegan the RoboTurtle", an autonomous underwater vehicle (AUV) powered entirely by four flapping foils. Biomimetic actuation is shown to produce dramatic improvements in AUV maneuvering at cruising speeds, while simultaneously allowing for agility at low speeds. Using control algorithms linear in the modified Rodrigues parameters to support large angle maneuvers, the vehicle is successfully controlled in banked and twisting turns, exceeding the best reported AUV turning performance by more than a factor of two; a minimum turning radius of 0.7BL, and the ability to avoid walls detected> 1.8BL ahead, are found for cruising speeds of 0.75BL/S, with a maximum heading rate of 400 / S recorded. Observations of "Myrtle", a 250kg Green sea turtle (Chelonia mydas) at the New England Aquarium, are detailed; along with steady swimming, Myrtle is observed performing 1800 level turns and rapidly actuating pitch to control depth and speed. Limb kinematics for the level turning maneuver are replicated by Finnegan, and turning rates comparable to those of the turtle are achieved. Foil kinematics which produce approximately sinusoidal nominal angle of attack trace are shown to improve turning performance by as much as 25%; the effect is achieved despite limited knowledge of the flow field. Finally, tests with a single foil are used to demonstrate that biomimetically inspired inline motion can allow oscillating foils utilizing a power/recovery style stroke to generate as much as 90% of the thrust from a power/power stroke style motion.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2008
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • WHOI Theses
    Suggested Citation
    Thesis: Licht, Stephen Carl, "Biomimetic oscillating foil propulsion to enhance underwater vehicle agility and maneuverability", 2008-06, DOI:10.1575/1912/2763, https://hdl.handle.net/1912/2763
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Six degree of freedom vehicle controller design for the operation of an unmanned underwater vehicle in a shallow water environment 

      Hajosy, Michael F. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1994-09)
      Closed loop control of an unmanned underwater vehicle (UUV) in the dynamically difficult environment of shallow water requires explicit consideration of the highly coupled nature of the governing non-linear equations of ...
    • Thumbnail

      Characterization of underwater target geometry from Autonomous Underwater Vehicle sampling of bistatic acoustic scattered fields 

      Fischell, Erin M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2015-06)
      One of the long term goals of Autonomous Underwater Vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using ...
    • Thumbnail

      Autonomous & adaptive oceanographic feature tracking on board autonomous underwater vehicles 

      Petillo, Stephanie M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2015-02)
      The capabilities of autonomous underwater vehicles (AUVs) and their ability to perform tasks both autonomously and adaptively are rapidly improving, and the desire to quickly and efficiently sample the ocean environment ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo