Biomimetic oscillating foil propulsion to enhance underwater vehicle agility and maneuverability
Citable URI
https://hdl.handle.net/1912/2763DOI
10.1575/1912/2763Abstract
Inspired by the swimming abilities of marine animals, this thesis presents "Finnegan
the RoboTurtle", an autonomous underwater vehicle (AUV) powered entirely by four
flapping foils. Biomimetic actuation is shown to produce dramatic improvements in
AUV maneuvering at cruising speeds, while simultaneously allowing for agility at
low speeds. Using control algorithms linear in the modified Rodrigues parameters to
support large angle maneuvers, the vehicle is successfully controlled in banked and
twisting turns, exceeding the best reported AUV turning performance by more than
a factor of two; a minimum turning radius of 0.7BL, and the ability to avoid walls
detected> 1.8BL ahead, are found for cruising speeds of 0.75BL/S, with a maximum
heading rate of 400
/ S recorded.
Observations of "Myrtle", a 250kg Green sea turtle (Chelonia mydas) at the New
England Aquarium, are detailed; along with steady swimming, Myrtle is observed performing
1800 level turns and rapidly actuating pitch to control depth and speed. Limb
kinematics for the level turning maneuver are replicated by Finnegan, and turning
rates comparable to those of the turtle are achieved. Foil kinematics which produce
approximately sinusoidal nominal angle of attack trace are shown to improve turning
performance by as much as 25%; the effect is achieved despite limited knowledge of
the flow field. Finally, tests with a single foil are used to demonstrate that biomimetically
inspired inline motion can allow oscillating foils utilizing a power/recovery style
stroke to generate as much as 90% of the thrust from a power/power stroke style
motion.
Description
Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2008
Suggested Citation
Thesis: Licht, Stephen Carl, "Biomimetic oscillating foil propulsion to enhance underwater vehicle agility and maneuverability", 2008-06, DOI:10.1575/1912/2763, https://hdl.handle.net/1912/2763Related items
Showing items related by title, author, creator and subject.
-
Six degree of freedom vehicle controller design for the operation of an unmanned underwater vehicle in a shallow water environment
Hajosy, Michael F. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1994-09)Closed loop control of an unmanned underwater vehicle (UUV) in the dynamically difficult environment of shallow water requires explicit consideration of the highly coupled nature of the governing non-linear equations of ... -
A parallel hypothesis method of autonomous underwater vehicle navigation
LaPointe, Cara Elizabeth Grupe (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2009-06)This research presents a parallel hypothesis method for autonomous underwater vehicle navigation that enables a vehicle to expand the operating envelope of existing long baseline acoustic navigation systems by incorporating ... -
Large-area visually augmented navigation for autonomous underwater vehicles
Eustice, Ryan M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2005-06)This thesis describes a vision-based, large-area, simultaneous localization and mapping (SLAM) algorithm that respects the low-overlap imagery constraints typical of autonomous underwater vehicles (AUVs) while exploiting ...