• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Time dependent flow of Atlantic water on the continental slope of the Beaufort Sea based on moorings

    Thumbnail
    View/Open
    Article (5.480Mb)
    Date
    2021-05-26
    Author
    Li, Jianqiang  Concept link
    Lin, Peigen  Concept link
    Pickart, Robert S.  Concept link
    Yang, Xiao-Yi  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/27587
    As published
    https://doi.org/10.1029/2020JC016996
    DOI
    10.1029/2020JC016996
    Abstract
    The flow and transformation of warm, salty Atlantic-origin water (AW) in the Arctic Ocean plays an important role in the global overturning circulation that helps regulate Earth's climate. The heat that it transports also impacts ice melt in different parts of the Arctic. This study uses data from a mooring array deployed across the shelf/slope of the Alaskan Beaufort Sea from 2002–2004 to investigate the flow of AW. A short-lived “rebound jet” of AW on the upper continental slope regularly follows wind-driven upwelling events. A total of 57 such events, lasting on average 3 days each, occurred over the 2 year period. As the easterly wind subsides, the rebound jet quickly spins up while the isopycnals continue to slump from their upwelled state. The strength of the jet is related to the cross-slope isopycnal displacement, which in turn is dependent on the magnitude of the wind, in line with previous modeling. Seaward of the rebound jet, the offshore-most mooring of the array measured the onshore branch of the AW boundary flowing eastward in the Canada Basin. However, the signature of the boundary current was only evident in the second year of the mooring timeseries. We suspect that this is due to the varying influence of the Beaufort Gyre in the two years, associated with a change in pattern of the wind stress curl that helps drive the gyre.
    Description
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(6), (2021): e2020JC016996, https://doi.org/10.1029/2020JC016996.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Li, J., Lin, P., Pickart, R. S., & Yang, X.-Y. (2021). Time dependent flow of Atlantic water on the continental slope of the Beaufort Sea based on moorings. Journal of Geophysical Research: Oceans, 126(6), e2020JC016996.
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo