• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Cross-equatorial anti-symmetry in the seasonal transport of the western boundary current in the Atlantic Ocean

    Thumbnail
    View/Open
    Article (4.472Mb)
    Date
    2021-04-23
    Author
    Zhai, Yujia  Concept link
    Yang, Jiayan  Concept link
    Wan, Xiuquan  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/27535
    As published
    https://doi.org/10.1029/2021JC017184
    DOI
    10.1029/2021JC017184
    Abstract
    The western boundary current in the equatorial Atlantic Ocean is a main conduit for water-mass exchanges across the equator and thus a major pathway for the interhemispheric transports in the Atlantic Meridional Overturning Circulation (AMOC) system. In this study we quantify and examine the mean and seasonal variability of the equatorial western boundary current (EWBC) in the upper ocean layer using two data-assimilated products, the Estimating the Circulation and Climate of the Ocean (ECCO4r3) and the Simple Ocean Data Assimilation (SODA3). It is found that the EWBC between 10°S and 10°N exhibits two pronounced features in its seasonal variability: (1) the transport varies anti-symmetrically across the equator, that is, the northward EWBC strengthens to the north of the equator when it weakens to the south of the equator, and vice versa; and (2) the amplitude of seasonal variations is much greater in the northern hemisphere than in the south. We hypothesize that the cross-equatorial anti-symmetry in EWBC transport variability is attributable to the impingement of equatorial Rossby waves at the western boundary and the shape of the western boundary is the main cause for the amplified seasonal variability in the northern hemisphere. A simple 1 and 1/2-layer model is used to test and validate this hypothesis and to elucidate the role of wind forcing and topography plays in the seasonal variability in the EWBC transport.
    Description
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(5), (2021): e2021JC017184, https://doi.org/10.1029/2021JC017184.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Zhai, Y., Yang, J., & Wan, X. (2021). Cross-equatorial anti-symmetry in the seasonal transport of the western boundary current in the Atlantic Ocean. Journal of Geophysical Research: Oceans, 126(5), e2021JC017184.
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo