A warm jet in a cold ocean

Thumbnail Image
Date
2021-04-23
Authors
MacKinnon, Jennifer A.
Simmons, Harper L.
Hargrove, John
Thomson, Jim
Peacock, Thomas
Alford, Matthew H.
Barton, Benjamin I.
Boury, Samuel
Brenner, Samuel D.
Couto, Nicole
Danielson, Seth L.
Fine, Elizabeth C.
Graber, Hans C.
Guthrie, John D.
Hopkins, Joanne E.
Jayne, Steven R.
Jeon, Chanhyung
Klenz, Thilo
Lee, Craig M.
Lenn, Yueng-Djern
Lucas, Andrew J.
Lund, Björn
Mahaffey, Claire
Norman, Louisa
Rainville, Luc
Smith, Madison M.
Thomas, Leif N.
Torres-Valdes, Sinhue
Wood, Kevin R.
Alternative Title
Date Created
Location
DOI
10.1038/s41467-021-22505-5
Related Materials
Replaces
Replaced By
Keywords
Abstract
Unprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.
Description
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in MacKinnon, J. A., Simmons, H. L., Hargrove, J., Thomson, J., Peacock, T., Alford, M. H., Barton, B., Boury, S., Brenner, S. D., Couto, N., Danielson, S. L., Fine, E. C., Graber, H. C., Guthrie, J., Hopkins, J. E., Jayne, S. R., Jeon, C., Klenz, T., Lee, C. M., Lenn, Y-D., Lucas, A. J., Lund, B., Mahaffey, C., Norman, L., Rainville, L., Smith, M. M., Thomas, L. N., Torres-Valdés, S., & Wood, K. R. A warm jet in a cold ocean. Nature Communications, 12(1), (2021): 2418, https://doi.org/10.1038/s41467-021-22505-5.
Embargo Date
Citation
MacKinnon, J. A., Simmons, H. L., Hargrove, J., Thomson, J., Peacock, T., Alford, M. H., Barton, B., Boury, S., Brenner, S. D., Couto, N., Danielson, S. L., Fine, E. C., Graber, H. C., Guthrie, J., Hopkins, J. E., Jayne, S. R., Jeon, C., Klenz, T., Lee, C. M., Lenn, Y-D., Lucas, A. J., Lund, B., Mahaffey, C., Norman, L., Rainville, L., Smith, M. M., Thomas, L. N., Torres-Valdés, S., & Wood, K. R. (2021). A warm jet in a cold ocean. Nature Communications, 12(1), 2418.
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 4.0 International