Kinematic structure and dynamics of the Denmark Strait Overflow from ship-based observations

View/ Open
Date
2020-11-01Author
Lin, Peigen
Concept link
Pickart, Robert S.
Concept link
Jochumsen, Kerstin
Concept link
Moore, G. W. K.
Concept link
Valdimarsson, Héðinn
Concept link
Fristedt, Tim
Concept link
Pratt, Lawrence J.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/27490As published
https://doi.org/10.1175/JPO-D-20-0095.1DOI
10.1175/JPO-D-20-0095.1Abstract
The dense outflow through Denmark Strait is the largest contributor to the lower limb of the Atlantic meridional overturning circulation, yet a description of the full velocity field across the strait remains incomplete. Here we analyze a set of 22 shipboard hydrographic–velocity sections occupied along the Látrabjarg transect at the Denmark Strait sill, obtained over the time period 1993–2018. The sections provide the first complete view of the kinematic components at the sill: the shelfbreak East Greenland Current (EGC), the combined flow of the separated EGC, and the North Icelandic Jet (NIJ), and the northward-flowing North Icelandic Irminger Current (NIIC). The total mean transport of overflow water is 3.54 ± 0.29 Sv (1 Sv ≡ 106 m3 s−1), comparable to previous estimates. The dense overflow is partitioned in terms of water mass constituents and flow components. The mean transports of the two types of overflow water—Atlantic-origin Overflow Water and Arctic-origin Overflow Water—are comparable in Denmark Strait, while the merged NIJ–separated EGC transports 55% more water than the shelfbreak EGC. A significant degree of water mass exchange takes place between the branches as they converge in Denmark Strait. There are two dominant time-varying configurations of the flow that are characterized as a cyclonic state and a noncyclonic state. These appear to be wind-driven. A potential vorticity analysis indicates that the flow through Denmark Strait is subject to symmetric instability. This occurs at the top of the overflow layer, implying that the mixing/entrainment process that modifies the overflow water begins at the sill.
Description
Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11), (2020): 3235–3251, https://doi.org/10.1175/JPO-D-20-0095.1.
Collections
Suggested Citation
Lin, P., Pickart, R. S., Jochumsen, K., Moore, G. W. K., Valdimarsson, H., Fristedt, T., & Pratt, L. J. (2020). Kinematic structure and dynamics of the Denmark Strait Overflow from ship-based observations. Journal of Physical Oceanography, 50(11), 3235–3251.Related items
Showing items related by title, author, creator and subject.
-
The dynamic role of ridges in a β-plane channel : towards understanding the dynamics of large scale circulation in the Southern Ocean
Wang, Liping (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1993-07)In this thesis, the dynamic role of bottom topography in a β-plane channel is systematically studied in both linear homogeneous and stratified layer models in the presence of either wind stress (Chapters 2, 3, 4, and 6) ... -
Bio-physical models of oceanic population dynamics : 1994 summer study program in geophysical fluid dynamics
Flierl, Glenn R.; Olson, Donald B. (Woods Hole Oceanographic Institution, 1997-11)Bio-Physical Models of Oceanic Population Dynamics was the central theme of the 1994 summer program in Geophysical Fluid Dynamics (GFD) at the Woods Hole Oceanographic Institution. This unusual topic brought together m ... -
Ocean–atmosphere dynamics during Hurricane Ida and Nor’Ida : an application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system
Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy; Zambon, Joseph B.; He, Ruoying (Elsevier B.V., 2011-12-30)The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which ...